Аминокислоты. Сколько аминокислот входит в состав белка? Группы и виды аминокислот В состав природных белков входят остатки аминокислот

1) Гидрофобные аминокислоты (неполярные). Компоненты радикалов содержат обычно углеводородные группы и ароматические кольца. К гидрофобным аминокислотам относятся ала, вал, лей, иле, фен, три, мет.

2) Гидрофильные (полярные) незаряженные аминокислоты. Радикалы таких аминокислот содержат в своем составе полярные группировки (-ОН, -SH, -NH2). Эти группы взаимодействуют с дипольными молекулами воды, которые ориентируются вокруг них. К полярным незаряженным относятся гли, сер, тре, тир, цис, глн, асн.

3) Полярные отрицательно заряженные аминокислоты. К ним относятся аспарагиновая и глутаминовая кислоты. В нейтральной среде асп и глу приобретают отрицательный заряд.

4) Полярные положительно заряженные аминокислоты: аргинин, лизин и гистидин. Имеют дополнительную аминогруппу (или имидазольное кольцо, как гистидин) в радикале. В нейтральной среде лиз, арг и гαис приобретают положительный заряд.

II. Биологическая классификация.

1) Незаменимые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей (вал, иле, лей, лиз, мет, тре, три, фен) и еще 2 аминокислоты относятся к частично незаменимым (арг, гис).

2) Заменимые аминокислоты могут синтезироваться в организме человека (глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин).

Строение аминокислот . Все аминокислоты являются α-аминокислотами. Аминогруппа общей части всех аминокислот присоединена к α-углеродному атому. Аминокислоты содержат карбоксильную группу -COOH и аминогруппу -NH2. В белке ионогенные группы общей части аминокислот участвуют в образовании пептидной связи, и все свойства белка определяются только свойствами радикалов аминокислот. Аминокислоты амфотерные соединения. Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом.

Физико-химические свойства белков .

Выделение и очистка: электрофоретическое разделение, гель-фильтрация и др. Молекулярная масса белков, амфотерность, растворимость (гидратация, высаливание). Денатурация белков, ее обратимость.

Молекулярная масса . Белки - высокомолекулярные органические азотсодержащие полимеры, построенные из аминокислот. Молекулярная масса белков зависит от количества аминокислот в каждой субъединице.

Буферные свойства. Белки - амфотерные полиэлектролиты, т.е. они сочетают в себе кислые и основные свойства. В зависимости от этого белки могут быть кислыми и основными.


Факторы стабилизации белка в растворе . ГИДРАТНАЯ ОБОЛОЧКА - это слой молекул воды, определенным образом ориентированных на поверхности белковой молекулы. Поверхность большинства белковых молекул заряжена отрицательно, и диполи молекул воды притягиваются к ней своими положительно заряженными полюсами.

Факторы, снижающие растворимость белков . Значение рН, при котором белок становится электронейтральным, называется изоэлектрической точкой (ИЭТ) белка. Для основных белков ИЭТ находится в щелочной среде, для кислых - в кислой среде. Денатурация - это последовательное нарушение четвертичной, третичной, вторичной структур белка, сопровождающееся потерей биологических свойств. Денатурированный белок выпадает в осадок. Осадить белок можно, изменяя рН среды (ИЭТ), либо высаливанием, либо действуя каким-либо фактором денатурации. Физические факторы: 1. Высокие температуры.

Часть белков подвергается денатурации уже при 40-50 2. Ультрафиолетовое облучение 3. Рентгеновское и радиоактивное облучение 4. Ультразвук 5. Механическое воздействие (например, вибрация). Химические факторы: 1. Концентрированные кислоты и щелочи. 2. Соли тяжелых металлов (например, CuSO4). 3. Органические растворители (этиловый спирт, ацетон) 4. Нейтральные соли щелочных и щелочноземельных металлов (NaCl, (NH4)2SO4)

Структурная организация белковых молекул.

Первичная, вторичная, третичная структуры. Связи, участвующие в стабилизации структур. Зависимость биологических свойств белков от вторичной и третичной структуры. Четвертичная структура белков. Зависимость биологической активности белков от четвертичной структуры (изменение конформации протомеров).

Существует четыре уровня пространственной организации белка: первичная, вторичная, третичная и четвертичная структура белковых молекул. Первичная структура белка - последовательность аминокислот в полипептидной цепи (ППЦ). Пептидная связь формируется только за счет альфа-аминогруппы и альфа-карбоксильной группы аминокислот. Вторичная структура - это пространственная организация стержня полипептидной цепи в виде α-спирали или β-складчатой структуры. В α-спирали на 10 витков приходится 36 аминокислотных остатков. Фиксируется α-спираль с помощью водородных связей между NH-группами одного витка спирали и С=О группами соседнего витка.

β-Складчатая структура удерживается также водородными связями между С=О и NH-группами. Третичная структура - особое взаимное расположение в пространстве спиралеобразных и складчатых участков полипептидной цепи. В формировании третичной структуры участвуют прочные дисульфидные связи и все слабые типы связей (ионные, водородные, гидрофобные, Ван-дер-ваальсовые взаимодействия). Четвертичная структура - трехмерная организация в пространстве нескольких полипептидных цепей. Каждая цепь называется субъединицей (или протомером). Поэтому белки, обладающие четвертичной структурой, называют олигомерными белками.

4. Простые и сложные белки, их классификация.

Характер связей простетических групп с белком. Биологические функции белков. Способность к специфическим взаимодействиям с лигандом.

Простые белки построены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др.

Классификация сложных белков:

Фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты),

Нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы),

Липопротеины (содержат липиды) и металлопротеины (содержат металлы).

Активный центр белковой молекулы . При функционировании белков может происходить их связывание с лигандами - низкомолекулярными веществами. Лиганд присоединяется к определенному участку в белковой молекуле - активному центру. Активный центр формируется на третичном и четвертичном уровнях организации белковой молекулы и образуется благодаря притяжению боковых радикалов определенных аминокислот (между -ОН группами сер формируются водородные связи, ароматические радикалы связаны гидрофобными взаимодействиями, -СООН и -NH2 - ионными связями).

Углеводсодержащие белки: гликопротеины, протеогликаны.

Основные углеводы организма человека: моносахариды, дисахариды, гликоген, гетерополисахариды, их структура и функции.

Углеводсодержащие белки (гликопротеины и протеогликаны). Простетическая группа гликопротеинов может быть представлена моносахаридами (глюкозой, галактозой, маннозой, фруктозой, 6-дезоксигалактозой), их аминами и ацетилированными производными аминосахаров (ацетилглюкоза, ацетилгалактоза. На долю углеводов в молекулах гликопротеинов приходится до 35%. Гликопротеины преимущественно глобулярные белки. Углеводный компонент протеогликанов может быть представлен несколькими цепями гетерополисахаридов.

Биологические функции гликопротеинов:

1. транспортная (белки крови глобулины транспортируют ионы железа, меди, стероидные гормоны);

2. защитная : фибриноген осуществляет свертывание крови; б. иммуноглобулины обеспечивают иммунную защиту;

3. рецепторная (на поверхности клеточной мембраны расположены рецепторы, которые обеспечивают специфическое взаимодействие).

4. ферментативная (холинэстераза, рибонуклеаза);

5. гормональная (гормоны передней доли гипофиза - гонадотропин, тиреотропин).

Биологические функции протеогликанов: гиалуроновая и хондроитинсерная кислоты, кератинсульфат выполняют структурную, связующую, поверхностно-механическую функции.

Липопротеины тканей человека. Классификация липидов.

Основные представители : триацилглицерины, фосфолипиды, гликолипиды, холестериды. Их структура и функции. Незаменимые жирные кислоты и их производные. Состав, строение и функции липопротеинов крови.

Нуклеопротеины.

Особенности белковой части. История открытия и изучения нуклеиновых кислот. Структура и функции нуклеиновых кислот. Первичная и вторичная структура ДНК и РНК. Виды РНК. Строение хромосом.

Нуклеопротеины - сложные белки, в состав которых входит белок (протамин или гистон), небелковая часть представлена нуклеиновыми кислотами (НК): дезоксирибонуклеиновой кислотой (ДНК) и рибонуклеиновой кислотой (РНК). Протамины и гистоны - белки с резко выраженными основными свойствами, т.к. они содержат более 30% арг и лиз.

Нуклеиновые кислоты (НК) - это длинные полимерные цепи, состоящие из многих тысяч мономерных единиц, которые соединяются между собой 3`,5`- фосфоди-эфирными связями. Мономером НК является мононуклеотид, который состоит из азотистого основания, пентозы и остатка фосфорной кислоты. Азотистые основания бывают пуриновые (А и Г) и пиримидиновые (Ц, У, Т). В качестве пентозы выступает β- Д- рибоза или β -Д- дезоксирибоза. Азотистое основание соединено с пентозой N-гликозидной связью. Пентоза и фосфат связаны друг с другом сложноэфирной связью между -ОН группой, расположенной у С5’-атома пентозы, и фосфатом.

Виды нуклеиновых кислот:

1. ДНК содержит А, Г, Т и Ц, дезоксирибозу и фосфорную кислоту. ДНК находится в ядре клетки и составляет основу сложного белка хроматина.

2. РНК содержит А, Г, У и Ц, рибозу и фосфорную кислоту.

Различают 3 вида РНК:

а) м-РНК (информационная или матричная) - копия участка ДНК, содержит информацию о структуре белка;

б) р-РНК образует скелет рибосомы в цитоплазме, выполняет важную роль при сборке белка на рибосоме в процессе трансляции;

в) т-РНК участвует в активации и транспорте АК к рибосоме, локализована в цитоплазме. НК имеют первичную, вторичную и третичную структуры.

Первичная структура НК одинакова для всех видов - линейная полинуклеотидная цепь, в которой мононуклеотиды связаны 3’, 5’-фосфодиэфирными связями. Каждая полинуклеотидная цепь имеет 3’ и 5’ , эти концы заряжены отрицательно.

Вторичная структура ДНК представляет собой двойную спираль. ДНК состоит из 2-х цепей, закрученных в спираль вправо вокруг оси. Виток спирали = 10 нуклеотидов, что составляет в длину 3,4 нм. Обе спирали антипараллельны.

Третичная структура ДНК - это результат дополнительного скручивания в пространстве молекулы ДНК. Это происходит при взаимодействии ДНК с белком. При взаимодействии с октамером гистона двойная спираль накручивается на октамер, т.е. превращается в суперспираль.

Вторичная структура РНК - полинуклеотидная нить, изогнутая в пространстве. Эта изогнутость обусловлена образованием водородных связей между комплементарными азотистыми основаниями. У т-РНК вторичная структура представлена «клеверным листом», в котором различаю комплементарные и некомплементарные участки. Вторичная структура р-РНК - спираль одиночной изогнутой РНК, а третичная - скелет рибосомы. Поступая из ядра в ЦЗ, м-РНК образует со специфическими белками - информомерами комплексы (третичная структура м-РНК ) и называются информосомами.

Хромопротеины, их классификация. Флавопротеины, их структура и функции.

Гемопротеины , структура, представители: гемоглобин, миоглобин, каталаза, пероксидаза, цитохромы. Функции гемопротеинов.

Фосфопротеины в качестве простетической группы содержат остаток фосфорной кислоты. Примеры: казеин и казеиноген молока, творога, молочных продуктов, вителлин яичного желтка, овальбумин яичного белка, ихтуллин икры рыб. Фосфопротеинами богаты клетки ЦНС.

Фосфопротеины обладают многообразными функциями:

1. Питательная функция. Фосфопротеины молочных продуктов легко перевариваются, усваиваются и являются источником незаменимых аминокислот и фосфора для синтеза белков тканей ребенка.

2. Фосфорная кислота необходима для полноценного формирования нервной и костной тканей ребенка.

3. Фосфорная кислота участвует в синтезе фосфолипидов, фосфопротеинов, нуклеотидов, нуклеиновых кислот.

4. Фосфорная кислота осуществляет регуляцию активности ферментов путем фосфорилирования при участии ферментов протеинкиназ. Фосфат присоединяется к - ОН группе серина или треонина сложноэфирными связями: Хромопротеины - сложные белки с окрашенной небелковой частью. К ним относятся флавопротеины (желтые) и гемопротеины (красные). Флавопротеины в качестве простетической группы содержат производные витамина В2 - флавины: флавинадениндинуклеотид (ФАД) или флавинмононуклеотид (ФМН). Они являются небелковой частью ферментов дегидрогеназ, катализирующих окислительно-восстановительные реакции.

Гемопротеины в качестве небелковой группы содержат гем - железопорфириновый комплекс.

Гемопротеины подразделяют на два класса:

1. ферменты: каталаза, пероксидаза, цитохромы;

2. неферменты: гемоглобин и миоглобин.

Ферменты каталаза и пероксидаза разрушают перекись водорода, цитохромы являются переносчиками электронов в цепи переноса электронов. Неферменты. Гемоглобин транспортирует кислород (от легким к тканям) и углекислый газ (от тканей к легким); миоглобин - депо кислорода в работающей мышце. Гемоглобин - тетрамер, т.к. состоит из 4-х субъединиц: глобин в этом тетрамере представлен 4-мя полипептидными цепями 2-х разновидностей: 2 α и 2 β цепи. Каждая субъединица связана с гемом. Физиологические типы гемоглобина: 1. HbP - примитивный гемоглобин формируется у зародыша. 2. HbF - фетальный гемоглобин - гемоглобин плода. Замена HbP на HbF происходит к 3-х месячному возрасту человека.

Ферменты, история открытия и изучения ферментов, особенности ферментативного катализа.

Специфичность действия ферментов. Зависимость скорости ферментативных реакций от температуры, рН, концентрации фермента и субстрата.

Ферменты - биологические катализаторы белковой природы, образуемые живой клеткой, действующие с высокой активностью и специфичностью.

Сходство ферментов с небиологическими катализаторами заключается в том, что:

  • ферменты катализируют энергетически возможные реакции;
  • энергия химической системы остаётся постоянной;
  • в ходе катализа направление реакции не изменяется;
  • ферменты не расходуются в процессе реакции.

Отличия ферментов от небиологических катализаторов заключаются в том, что:

  • скорость ферментативных реакций выше, чем реакций, катализируемых небелковыми катализаторами;
  • ферменты обладают высокой специфичностью;
  • ферментативная реакция проходит в клетке, т.е. при температуре 37 °С, постоянном атмосферном давлении и физиологическом значении рН;
  • скорость ферментативной реакции может регулироваться.

Современная классификация ферментов основана на природе катализируемых ими химических превращений. В основу классификации берется тип реакции, катализируемой ферментом.

Фе рменты разделяют на 6 классов:

1. Оксидоредуктазы - катализируют окислительно-восстановительные реакции

2. Трансферазы - перенос групп

3. Гидролазы - гидролиз

4. Лиазы - негидролитическое расщепление субстрата

5. Изомеразы - изомеризация

6. Лигазы (синтетазы) - синтез с использованием энергии (АТФ)

Номенклатура ферментов.

1. Тривиальное название (пепсин, трипсин).

2. Название фермента может складываться из названия субстрата с прибавлением окончания «аза»

(аргиназа гидролизует аминокислоту аргинин).

3. Добавление окончания «аза» к названию катализируемой реакции (гидролаза катализирует

гидролиз, дегидрогеназа - дегидрирование органической молекулы, т.е. отнятие протонов и электронов от субстрата).

4. Рациональное название - название субстратов и характер катализируемых реакций (АТФ + гексоза гексозо-6-фосфат + АДФ. Фермент: АТФ: D-гексоза-6-фосфотрансфераза).

5. Индексирование ферментов (каждому ферменту присваиваются 4 индекса или порядковых номера): 1.1.1.1 - АДГ, 1.1.1.27 - ЛДГ.

Зависимость скорости ферментативной реакции от рН среды. Для каждого фермента существует значение рН, при котором наблюдается его максимальная активность. Отклонение от оптимального значения рН приводит к понижению ферментативной активности. Влияние рН на активность ферментов связано с ионизацией функциональных групп аминокислотных остатков данного белка, обеспечивающих оптимальную конформацию активного центра фермента. При изменении рН от оптимальных значений происходит изменение ионизации функциональных групп молекулы белка.

Например, при закислении среды происходит протонирование свободных аминогрупп (NH 3 +), а при защелачивании происходит отщепление протона от карбоксильных групп (СОО -). Это приводит к изменению конформации молекулы фермента и конформации активного центра; следовательно, нарушается присоединение субстрата, кофакторов и коферментов к активному центру. Ферменты, работающие в кислых условиях среды (например, пепсин в желудке или лизосомальные ферменты), эволюционно приобретают конформацию, обеспечивающую работу фермента при кислых значениях рН. Однако большая часть ферментов организма человека имеет оптимум рН, близкий к нейтральному , совпадающий с физиологическим значением рН.

Зависимость скорости ферментативной реакции от температуры среды. Повышение температуры до определённых пределов оказывает влияние на скорость ферментативной реакции, подобно влиянию температуры на любую химическую реакцию. С повышением температуры ускоряется движение молекул, что приводит к повышению вероятности взаимодействия реагирующих веществ. Кроме того, температура может повышать энергию реагирующих молекул, что также приводит к ускорению реакции.

Однако скорость химической реакции, катализируемая ферментами, имеет свой температурный оптимум, превышение которого сопровождается понижением ферментативной активности, возникающим из-за термической денатурации белковой молекулы. Для большинства ферментов человека оптимальна температура 37-38 °С. Специфичность - очень высокая избирательность ферментов по отношению к субстрату. Специфичность фермента объясняется совпадением пространственной конфигурации субстрата и субстратного центра (стерическое совпадение). За специфичность фермента ответственен как активный центр фермента, так и вся его белковая молекула. Активный центр фермента определяет тип реакции, который может осуществить данный фермент. Различают три вида специфичности:

Абсолютная специфичность. Такой специфичностью обладают ферменты, которые действуют только на один субстрат. Например, сахараза гидролизует только сахарозу, лактаза - лактозу, мальтаза - мальтозу, уреаза - мочевину, аргиназа - аргинин и т.д. Относительная специфичность - это способность фермента действовать на группу субстратов с общим типом связи, т.е. относительная специфичность проявляется только по отношению к определенному типу связи в группе субстратов. Пример: липаза расщепляют сложноэфирную связь в жирах животного и растительного происхождения. Амилаза гидролизует α-гликозидную связь в крахмале, декстринах и гликогене. Алкогольдегидрогеназа окисляет спирты (метанол, этанол и др.).

Стереохимическая специфичность - это способность фермента действовать только на один стереоизомер.

Например : 1) α, β-изомерия: α - амилаза слюны и сока поджелудочной железы расщепляет только α-глюкозидные связи в крахмале и не расщепляет β-глюкозидные связи клетчатки. Международной единицей (МЕ) активности ферментов является количество фермента, способного превратить 1 мкмоль субстрата в продукты реакции за 1 мин при 25 °С и оптимуме рН. Катал соответствует количеству катализатора, способного превращать 1 моль субстрата в продукт за 1 сек при 25 °С и оптимуме рН. Удельная активность фермента - число единиц ферментативной активности фермента в расчете на 1 мг белка. Молярная активность - это отношение числа единиц ферментативной активности каталов или МЕ к числу молей фермента.

Строение ферментов. Структура и функции активного центра.

Механизм действия ферментов. Кофакторы ферментов: ионы металлов и коферменты, их участие в работе ферментов. Активаторы ферментов: механизм действия. Ингибиторы ферментативных реакций: конкурентные, неконкурентные, необратимые. Лекарственные препараты - ингибиторы ферментов (примеры).

По строению ферменты могут быть:

1. однокомпонентные (простые белки),

2. двухкомпонентные (сложные белки).

К ферментам - простым белкам - относятся пищеварительные ферменты (пепсин, трипсин). К ферментам - сложным белкам - можно отнести ферменты, катализирующие окислительно - восстановительные реакции. Для каталитической активности двухкомпонентных ферментов необходим дополнительный химический компонент, который называется кофактор , их могут играть как неорганические вещества (ионы железа, магния, цинка, меди и др .), так и органические вещества - коферменты (например, активные формы витаминов ).

Для работы ряда ферментов необходимы и кофермент, и ионы металлов (кофактор). Коферменты - низкомолекулярные органические вещества небелковой природы, связанные с белковой частью фермента временно и непрочно. В случае, когда небелковая часть фермента (кофермент) связана с белковой прочно и постоянно, то такую небелковую часть называют простетической группой . Белковая часть сложного белка-фермента называют апоферментом. Вместе апофермент и кофактор образуют холофермент .

В процессе ферментативного катализа, принимает участие не вся белковая молекула, а лишь определенный участок - активный центр фермента. Активный центр ферментов представляет часть молекулы фермента, к которой присоединяется субстрат и от которой зависят каталитические свойства молекулы фермента. В активном центре фермента выделяют «контактный» участок - участок, притягивающий и удерживающий субстрат на ферменте благодаря своим функциональным группам и «каталитический» участок , функциональные группы которого непосредственно участвуют в каталитической реакции. У некоторых ферментов, кроме активного центра, имеется еще «другой» центр - аллостерический.

С аллостерическим центром взаимодействуют различные вещества (эффекторы), чаще всего различные метаболиты. Соединение этих веществ с аллостерическим центром приводит к изменению конформации фермента (третичной и четвертичной структуры). Активный центр в молекуле фермента либо создается, либо он нарушается. В первом случае реакция ускоряется, во втором случае тормозится. Поэтому аллостерический центр называют регуляторным центром фермента. Ферменты, имеющие в своей структуре аллостерический центр, называются регуляторными или аллостерическими . В основу теории механизма действия ферментов положено образование фермент-субстратного комплекса.

Механизм действия фермента:

1. образование фермент-субстратного комплекса, субстрат прикрепляется к активному центру фермента.

2. на второй стадии ферментативного процесса, которая протекает медленно, происходят электронные перестройки в фермент-субстратном комплексе.

Фермент (En) и субстрат (S) начинают сближаться, чтобы вступить в максимальный контакт и образовать единый фермент-субстратный комплекс. Продолжительность второй стадии зависит от энергии активации субстрата или энергетического барьера данной химической реакции. Энергия активации - энергия, необходимая для перевода всех молекул 1 моля S в активированное состояние при данной температуре. Для каждой химической реакции существует свой энергетический барьер. Благодаря образованию фермент-субстратного комплекса снижается энергия активации субстрата, реакция начинает протекать на более низком энергетическом уровне. Поэтому вторая стадия процесса лимитирует скорость всего катализа.

3. на третьей стадии происходит сама химическая реакция с образованием продуктов реакции. Третья стадия процесса непродолжительна. В результате реакции субстрат превращается в продукт реакции; фермент-субстратный комплекс распадается и фермент выходит неизмененным из ферментативной реакции. Таким образом, фермент дает возможность за счет образования фермент-субстратного комплекса проходить химической реакции обходным путем на более низком энергетическом уровне.

Кофактор - небелковое вещество, которое обязательно должно присутствовать в организме в небольших количествах, чтобы соответствующие ферменты смогли выполнить свои функции. В состав кофактора входят коферменты и ионы металлов (например, ионы натрия и калия).

Все ферменты относятся к глобулярным белкам, причем каждый фермент выполняет специфическую функцию, связанную с присущей ему глобулярной структурой. Однако активность многих ферментов зависит от небелковых соединений, называемых кофакторами. Молекулярный комплекс белковой части (апофермента) и кофактора называется холоферментом.

Роль кофактора могут выполнять ионы металлов (Zn 2+ , Mg 2+ , Mn 2+ , Fe 2+ , Cu 2+ , K + , Na +) или сложные органические соединения. Органические кофакторы обычно называют коферментами, некоторые из них являются производными витаминов. Тип связи между ферментом и коферментом может быть различным. Иногда они существуют отдельно и связываются друг с другом во время протекания реакции. В других случаях кофактор и фермент связаны постоянно и иногда прочными ковалентными связями. В последнем случае небелковая часть фермента называется простетической группой.

Роль кофактора в основном сводится к следующему:

  • изменение третичной структуры белка и создание комплементарности между ферментом и субстратом;
  • непосредственное участие в реакции в качестве еще одного субстрата.

Активаторами могут быть:

1) кофакторы, т.к. они важные участники ферментативного процесса. Например, металлы, входящие в состав каталитического центра фермента: амилаза слюны активна в присутствии ионов Са, лактатдегидрогеназа (ЛДГ) - Zn, аргиназа - Mn, пептидаза - Mg и коферменты: витамин С, производные различных витаминов (НАД, НАДФ, ФМН, ФАД, КоАSH и др.). Они обеспечивают связывание активного центра фермента с субстратом.

2) анионы также могут оказывать активирующее влияние на активность фермента, например, анионы

Сl - активируют слюнную амилазу;

3) активаторами могут служить также вещества, создающие оптимальное значение рН среды для проявления ферментативной активности, например, НСl для создания оптимальной среды желудочного содержимого для активации пепсиногена в пепсин;

4) активаторами являются также вещества, переводящие проферменты в активный фермент, например, энтерокиназа кишечного сока активирует превращение трипсиногена в трипсин;

5) активаторами могут быть разнообразные метаболиты, которые связываются с аллостерическим центром фермента и способствуют формированию активного центра фермента.

Ингибиторы - это вещества, которые тормозят активность ферментов. Различают два основных типа ингибирования: необратимое и обратимое. При необратимом ингибировании - ингибитор прочно (необратимо) связывается с активным центром фермента ковалентными связями, изменяет конформацию фермента. Таким образом, могут действовать на ферменты соли тяжелых металлов (ртути, свинца, кадмия и др.). Обратимое ингибирование - это такой тип ингибирования, когда активность ферментов может восстанавливаться. Обратимое ингибирование бывает 2-х типов: конкурентное и неконкурентное. При конкурентном ингибировании обычно субстрат и ингибитор очень похож по химическому строению.

При этом виде ингибирования субстрат (S) и ингибитор (I) одинаково могут связываться с активным центром фермента. Они конкурируют друг с другом за место в активном центре фермента. Классический пример, конкурентного ингибирование - торможение действия сукцинатдегидрогеназы малоновой кислотой . Неконкурентные ингибиторы связываются с аллостерическим центром фермента.

Вследствие этого происходят изменения конформации аллостерического центра, которые приводят к деформации каталитического центра фермента и снижению ферментативной активности. Часто аллостерическими неконкурентными ингибиторами выступают продукты метаболизма. Лекарственные свойства ингибиторов ферментов (Контрикал, Трасилол, Аминокапроновая кислота, Памба). Контрикал (апротинин) применяют для лечения острого панкреатита и обострения хронического панкреатита, острого панкреонекроза, острых кровотечений.

Регуляция действия ферментов. Аллостерический центр, аллостерические ингибиторы и активаторы (примеры). Регуляция активности ферментов путем фосфорилирования и дефосфорилирования (примеры). Виды гормональной регуляции активности ферментов.

Различия ферментов состава органов и тканей.

Органоспецифические ферменты, изоферменты (на примере ЛДГ, МДГ и др.). Изменения активности ферментов при патологии. Энзимопатии, энзимодиагностика и энзимотерапия.

Изоферменты — это различные по аминокислотной последовательности изоформы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах.

Изоферменты, как правило, высоко гомологичны по аминокислотной последовательности. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам. Примером фермента, имеющего изоферменты, является амилаза — панкреатическая амилаза отличается по аминокислотной последовательности и свойствам от амилазы слюнных желёз, кишечника и других органов. Это послужило основой для разработки и применения более надёжного метода диагностики острого панкреатита путём определения не общей амилазы плазмы крови, а именно панкреатической изоамилазы.

Энзимопатии - заболевания, вызванные нарушением синтеза ферментов:

а) в полном или частичном отсутствии ферментативной активности;

б) в чрезмерном усилении ферментативной активности;

в) в продукции патологических ферментов, которые не встречаются у здорового человека.

Различают наследственные и приобретенные энзимопатии. Наследственные энзимопатии связаны с нарушением в генетическом аппарате клетки, приводящим к отсутствию синтеза определенных ферментов.

К наследственным заболеваниям относятся энзимопатии, связанные с нарушением превращения аминокислот:

1. Фенилкетонурия - наследственное нарушение синтеза фермента фенилаланингидроксилазы, при участии которого происходит превращение фенилаланина в тирозин. При этой патологии происходит увеличение концентрации в крови фенилаланина. При этом заболевании у детей необходимо исключить из рациона фенилаланин.

2. Альбинизм - заболевание, связанное с генетическим дефектом фермента тирозиназы. При потере меланоцитами способности синтезировать этот фермент (окисляет тирозин в ДОФА и ДОФА-хинон) в коже, волосах и сетчатке глаза не образуется меланин.

Приобретенные энзимопатии , т.е. нарушение синтеза ферментов, могут возникать в результате:

1. длительного применения лекарств (антибиотиков, сульфаниламидов);

2. перенесенных инфекционных заболеваний;

3. вследствие авитаминозов;

4. злокачественных опухолей.

Энзимодиагностика определение активности ферментов для диагностики заболеваний. Ферменты плазмы крови делят на 3 группы: секреторные, индикаторные и экскреторные. Индикаторные - клеточные ферменты. При заболеваниях, сопровождающихся повреждением клеточных мембран, эти ферменты в большом количестве появляются в крови, свидетельствуя о патологии в определенных тканях. Например, активность амилазы в крови и моче увеличивается при острых панкреатитах.

Для энзимодиагностики проводят определение изоферментов. При патологических состояниях выход фермента в кровь может усилиться в связи с изменением состояния мембраны клетки. Исследование активности ферментов крови и других биологических жидкостях широко применяется с целью диагностики заболеваний. Например, диастаза мочи и амилаза крови при панкреатитах (повышение активности), понижение активности амилазы - при хроническом панкреатите.

Энзимотерапия - применение ферментов в качестве лекарственных препаратов. Например, смесь ферментативных препаратов пепсина, трипсина, амилазы (панкреатин, фестал) используют при заболеваниях ЖКТ с пониженной секрецией, трипсин и химотрипсин - используются в хирургическойпрактике при гнойных заболеваниях для гидролиза бактериальных белков.

Энзимопатия у детей и важность их биохимической диагностики (на примере нарушения азотистого и углеводного обмена).

Наиболее распространённый вариант энзимопатий, приводящий к развитию гемолитической анемии - недостаточность глюкозо6фосфат дегидрогеназы. Рассмотрим причины энзимопатий у детей. Заболевание широко распространено среди афроамериканцев (630%), меньше - среди татар (3,3%), народностей Дагестана (511,3%); в русской популяции выявляют редко (0,4%). Частный случай недостаточности глюкозо6фосфат дегидрогеназы - фавизм. Гемолиз развивается при употреблении в пищу конских бобов, фасоли, гороха, вдыхании нафталиновой пыли.

Причины энзимопатий у детей Наследование недостаточности глюкозо6фосфат дегидрогеназы (N), в силу чего чаще болеют мужчины. В мире насчитывают около 400 млн носителей этого патологического гена. Заболевание развивается, как правило, после приёма определённых лекарственных средств [производные нитрофурана, хинин, изониазид, фтивазид, аминосалициловая кислота (натрия парааминосалицилат), налидиксовая кислота, сульфаниламиды и др.] или на фоне инфекции.

Энзимопатии у детей - признаки.

Заболевание проявляется бурным развитием гемолиза при употреблении перечисленных выше веществ или инфекциях (особенно при пневмониях, брюшном тифе, гепатите). Недостаточность глкжозо6фосфат дегидрогеназы может быть причиной желтухи новорождённых. В анализе крови выявляют ретикулоцитоз, повышение уровня прямого и непрямого билирубина, ЛДГ, щелочной фосфатазы.

Морфология эритроцитов и эритроцитарные индексы не изменены. Диагноз устанавливают на основании результатов определения активности фермента.

Энзимопатии у детей - лечение.

Вне криза лечение не проводят. При лихорадке применяют физические методы охлаждения. При хроническом гемолизе назначают фолиевую кислоту 1 мт/сут по 3 нед каждые 3 мес. При кризе отменяют все лекарственные средства, проводят инфузионную терапию на фоне дегидратации.

Витамины, классификация витаминов (по растворимость и функциональная). История открытия и изучения витаминов.

Витамины - низкомолекулярные органические соединения различной химической природы и различного строения, синтезируемые главным образом растениями, частично - микроорганизмами.

Для человека витамины - незаменимые пищевые факторы. Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов. По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы.

Водорастворимые:

  • Витамин В 1 (тиамин);
  • Витамин В 2 (рибофлавин);
  • Витамин РР (никотиновая кислота, никотинамид, витамин В 3);
  • Пантотеновая кислота (витамин В 5);
  • Витамин В 6 (пиридоксин);
  • Биотин (витамин Н);
  • Фолиевая кислота (витамин В с, В 9);
  • Витамин В 12 (кобаламин);
  • Витамин С (аскорбиновая кислота);
  • Витамин Р (биофлавоноиды).

Аминокислоты, аминокарбоновые кислоты – органические соединения, содержащие в своем составе одновременно как аминную (-NH 2) , так и карбоксильную (-СООН) группы.

Аминокислоты могут рассматриваться в качестве производных карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

Все протеиногенные аминокислоты являются ^5,-аминокислотами.

История открытия и номенклатура аминокислот

Так как у одной и той же аминокислоты может быть несколько источников происхождения, некоторые аминокислоты приведены в таблице дважды, в зависимости от даты открытия и источника. В таблице приведены наиболее известные и значимые аминокислоты.

Аминокислота Систематические название Другие названия Год Источник Открывший впервые L-Аспарагин 1806 Сок спаржи Воклен Л.-Н. и Робике П.-Ж. L-Лейцин (2S)-2-amino-4– methylpentanoic acid 2-амино-4-метилпентановая кислота 1819 Сыр Пруст Д. Глицин 2-aminoacetic acid Аминоуксусная кислота 1820 Желатин Браконно А. L-Таурин 2-aminoethanesulfonic acid 2– Аминоэтансульфоновая кислота 1827 Бычья желчь Тидеманн Ф. и Гмелин Л. L-Аспарагиновая кислота 2-Aminobutanedioic acid 1827 Экстракт алтея аптечного Плиссон А. L-Тирозин (2S)-2-amino– 3– (4-hydroxyphenyl) propanoic acid 1846 Неочищенный казеин фон Либих Ю. L-Тирозин (2S)-2-amino-3– (4-hydroxyphenyl)propanoic acid 2-амино-3– (4– гидроксифенил) пропионовая кислота 1848 Гидролизат казеина Бопп Ф. L-Валин (2S)-2-amino-3-methylbutanoic acid 1856 Животные ткани фон Горуп-Безанц Е. L-Серин (2S)-2-amino-3-hydroxypropanoic acid 2-амино-3-гидроксипропановая кислота 1865 Шелк Крамер Э. L-Глутаминовая кислота 2-Aminopentanedioic acid 2-Аминопентадиовая кислота 1866 Растительные белки Риттхаузен Г. L-Аспарагиновая кислота 2-Aminobutanedioic acid Аминобутандиовая кислота, аспартат, аминоянтарная кислота 1868 Конглутин, легумин (ростки спаржи) Риттхаузен Г. L-Орнитин (2S) –2,5-diaminopentanoic acid 2,5-диаминопентановая кислота 1877 Куриная моча Яффе М. L-Валин (2S)-2-amino– 3-methylbutanoic acid (S)-2-амино-3-метилбутановая кислота 1879 Белок альбумин Шутценбергер П. L-Фенилаланин (2S)-2-amino-3-phenylpropanoic acid 2-амино-3-фенилпропановая кислота 1881 Ростки люпина Шульце А. и Барбьери Й. L-Глутамин (2S)-2,5-diamino –5-oxopentanoic acid 2-аминопентанамид– 5-овая кислота 1883 Сок свеклы Шульц Е. и Босхарт Е. L-Цистеин (2R)-2-amino-3-sulfanylpropanoic acid ^5,-амино– ^6,-тиопропионовая кислота, 2-амино-3-меркаптопропановая кислота 1884 Цистин Бауманн Е. L-Аргинин 2-амино-5– (диаминометилиденамино) пентановая кислота 1886 Экстракт рассады люпина Шульц Е. и Стигер Е. L-Аланин (2S)-2-aminopropanoic acid (S)-2-аминопропановая (^5,-аминопропионовая) кислота 1888 Фиброин шелка Вейль Т. L-Лизин (2S)-2,6-diaminohexanoic acid 2,6-диаминогексановая кислота 1889 Казеин Дрексель Э. L-Аргинин (2S)-2-amino-5– (diaminomethylideneamino) pentanoic acid 2-амино-5– (диамино метилиденамино) пентановая кислота 1895 Белок рога Гедин С. 3,5-Дийодтирозин 3,5-Diiodotyrosine 3,5-Дийодтирозин 1896 Кораллы Дрексель Е. L-Гистидин 1896 Стурин Коссель Е. L-Гистидин (2S)-2-amino-3– (1H-imidazol-5-yl) propanoic acid L-2-амино-3– (1H-имидазол– 4-ил) пропионовая кислота 1896 Гистоны Гедин С. L-Цистин (2R)-2-amino-3– [[ (2R)-2-amino-2-carboxyethyl]disulfanyl] propanoic acid 3,3′-дитио-бис-2-аминопропионовая кислота, дицистеин 1899 Вещество рога К. Мёрнер L-Пролин (2S)-pyrrolidine– 2-carboxylic acid L-пирролидин-2-карбоновая кислота 1901 Казеин Фишер Э. L-Триптофан (2S)-2-amino-3– (1H-indol-3-yl) propanoic acid 2-амино-3– (1H-индол-3-ил)пропионовая кислота 1901 Казеин Хопкинс Ф. и Коул С. L-Гидроксипролин (2S, 4R)– 4-hydroxypyrrolidine– 2-carboxylic acid L-4– гидроксипирролидин– 2-карбоноваякислота 1902 Желатин Фишер Э. L-Изолейцин (2S, 3S)-2-amino-3-methylpentanoic acid 2-амино-3-метилпентановая кислота 1904 Патока сахарной свеклы Эрлих Ф. ^6,-Аланин 3-aminopropanoic acid 3-аминопропионовая кислота 1911 Мясной экстракт Гулевич В. Лиотиронин (2S)-2-amino-3– propanoic acid Тиреоидные гормоны 1915 Ткань щитовидной железы Кендалл Е. L-Метионин (2S)-2-amino-4-methylsulfanylbutanoic acid 2-амино-4– (метилтио) бутановая кислота 1922 Казеин Мёллер Д. L-Треонин 1925 Белки овса Шрайвер C. и др. L-Гидроксилизин (2S, 5R)-2,6-Diamino-5-hydroxyhexanoic acid (2S, 5R)-2,6-диамино-5-гидроксигексановая кислота 1925 Рыбный желатин Шрайвер С. и др. L-Цитруллин 2-amino-5– (carbamoylamino) pentanoic acid 2-амино-5– (карбамоил амино) пентановая кислота 1930 Сок арбуза Вада М. L-Аспарагин (2S)-2,4-diamino-4– oxobutanoic acid 2-амино-3-карбамоилпропановая кислота 1932 Эдестин (белок семян конопли) Дамодаран М. L-Глутамин (2S)-2,5-diamino-5-oxopentanoic acid 2-аминопентанамид –5-овая кислота 1932 Глиадин (белок пшеницы) Дамодаран М. L-Треонин (2S, 3R)-2-amino-3-hydroxybutanoic acid 2-амино-3-гидроксибутановая кислота 1935 Казеин Роуз В.

Каждая из двадцати стандартных, и многие из нестандартных аминокислот, получили названия, в том числе, от источника, из которого впервые было выделено соединение: например, аспарагин выделен из спаржи (от латинского Asparagus), глутамин – из глютена пшеницы, тирозин – из казеина (от греческого `4,`5,`1,a2,`2, tyros – «сыр»).

Для сокращенной записи названий протеиногенных аминокислот используются коды, включающие в себя три первые буквы тривиального названия (за исключением аспарагина – «Асн», глутамина – «Глн», изолейцина – «Иле» и триптофана – «Трп». Для последнего также используется сокращение «Три»).

Иногда также используются обозначения Asx «аспарагиновая кислота, аспарагин» и Glx «глутаминовая кислота, глутамин». Существование подобных обозначений объясняется тем, что при гидролизе пептидов в щелочных или кислых средах, аспарагин и глутамин легко превращаются в соответствующие кислоты, из-за чего часто невозможно, без применения особых подходов, точно установить, какая именно аминокислота была в составе пептида.

Гидролиз (от древнегреческих P21,^8,`9,`1, – «вода» и _5,a3,`3,_3,`2, – «разложение») – водой, химическая реакция взаимодействия вещества с водой, при протекании которой происходит разложение вещества и воды с образованием новых соединений. Гидролиз соединений различных классов (белков, углеводов, жиров, сложных эфиров, солей) существенно различается. Гидролиз пептидов и белков происходит с образованием либо более коротких цепей (частичный гидролиз), либо смеси аминокислот (в ионной форме, полный гидролиз). Гидролиз пептидов может происходить как в щелочной или кислой среде, так и под действием ферментов. Ферментативный гидролиз важен тем, что протекает селективно, соответственно, расщепляются строго определенные участки пептидной цепи. Обычно гидролиз осуществляется в кислой среде, так как в условиях щелочного гидролиза многие аминокислоты неустойчивы. Кроме того, гидролизу подвергаются также аспарагина и глутамина.

Для формирования стабильных повторяющихся структур в белках, необходимо, чтобы все аминокислоты, входящие в их состав были представлены только одним энантиомером – L или D. В отличие от обычных химических реакций, в которых преимущественно образуются рацемические смеси стереоизомеров , у продуктов реакции биосинтеза в клетках есть только одна из форм. Данный результат достигается благодаря ферментам, имеющим несимметричные активные центры, и, следовательно, являющимися стереоспецифическими.

D-аминокислоты

D-аминокислоты синтезируются отдельными бактериями, в частности, сенной палочкой (Bacillus subtilis) и холерным вибрионом (Vibrio cholerae), которые используют D-форму аминокислот в качестве связующего компонента пептидогликанового слоя. Кроме того, D-аминокислоты регулируют работу ферментов, ответственных за армирование клеточных стенок.

Пептидные связи

Пептидная связь между лейцином и треонином в составе белка (шарико-стержневая модель).

Между карбоксильной группой одной ^5,-аминокислоты и аминогруппой другой может происходить реакция конденсации, продуктами которой являются дипептид и молекула воды. В образованном дипептидом остатке, аминокислоты соединены между собой CO-NH связью, которая называется пептидной (амидной).

Пептидные связи, независимо друг от друга, описали в 1902 году Эмиль Герман Фишер и Франц Гофмейстер .

Дипептид имеет два конца: N-, на котором размещена аминогруппа, и C-, на котором размещена карбоксильная группа. Каждый из концов может потенциально участвовать в последующей реакции конденсации с образованием линейных трипептидов, тетрапептидов, пентапептидов. Цепочки, содержащие 40 и более последовательно соединенных пептидными связями остатков аминокислот, называются полипептидами. Молекулы белков состоят из одного или нескольких полипептидных цепей.

Классификация аминокислот

Существует несколько классификаций аминокислот, в данной статье рассматриваются наиболее известные:

  • Классификация аминокислот по заменимым и незаменимым,
  • Классификация аминокислот на основе полярности боковых цепей,
  • Классификация аминокислот по функциональным группам,
  • Классификация аминокислот по аминоацил-тРНК-синтетазе,
  • Классификация аминокислот по путям биосинтеза,
  • Классификация аминокислот по характеру катаболизма,
  • «Миллеровские» аминокислоты.

Нестандартные аминокислоты рассмотрены отдельно, в разделе, посвященному нестандартным аминокислотам.

Классификация аминокислоты по заменимым и незаменимым

Заменимые аминокислоты – это аминокислоты, поступающие в организм человека с белковой пищей, либо образующиеся в организме из иных аминокислот. Незаменимые аминокислоты – это аминокислоты, которые не могут быть получены в организме человека с помощью биосинтеза, поэтому должны постоянно поступать в виде пищевых белков. Их отсутствие в организме приводит к явлениям, угрожающим жизни.

Заменимыми аминокислотами являются: тирозин, глутаминовая кислота, глутамат, аспарагин, аспарагиновая кислота, цистеин, серин, пролин, аланин, глицин.

Для взрослого здорового человека незаменимыми являются аминокислоты фенилаланин, триптофан, треонин, метионин, лизин, лейцин, изолейцин и валин, для детей, дополнительно, гистидин и аргинин.

Классификация аминокислот на заменимые и незаменимые содержит ряд исключений:

Незаменимые аминокислоты

*) Указана наиболее значимая биологическая роль незаменимой аминокислоты в организме человека.

**) Указаны продукты питания с наибольшим содержанием незаменимой аминокислоты.

Аминокислота Валин Валин – разветвленная незаменимая аминокислота, один из основных компонентов в синтезе и росте тканей тела. Вместе с изолейцином и лейцином, валин служит источником энергии в мышечных клетках, препятствует снижению уровня серотонина.

Также аминокислота является одним из исходных веществ в биосинтезе пантотеновой кислоты-Витамина B5 и пенициллина.

Соя, сыр (твердый, моцарелла), чечевица, печень говяжья, орехи арахис, маш, фасоль белая, мясо (индейка, свинина), рыба (горбуша, семга), горох. Изолейцин Изолейцин – незаменимая разветвленная аминокислота, участвующая в энергетическом обмене. При дефиците ферментов, катализирующих декарбоксилирование изолейцина, развивается .

Аминокислота выполняет значимые функции в получении энергии за счет расщепления гликогена мышц.

Соя, сыр (твердый, моцарелла), горох, мясо (свинина, индейка), фасоль белая, мясо, чечевица, маш, горбуша, креветки филе, печень говяжья. Лейцин Лейцин – незаменимая разветвленная аминокислота, необходимая для построения и развития мышечной ткани, синтеза протеина организмом и укрепления иммунной системы. Лейцин, как и изолейцин, может, на клеточном уровне, служить источником энергии.

Также данная аминокислота предотвращает перепроизводство серотонина, участвует в понижении уровня глюкозы в крови .

Соя, сыр (твердый, моцарелла), кальмар филе, чечевица, фасоль белая, маш, мясо (говядина, свинина, индейка), орехи арахис, горох, семга, печень говяжья. Лизин Лизин – незаменимая аминокислота, необходимая для производства альбуминов, гормонов, ферментов, антител, для роста и восстановления тканей (через участие в формировании ). Аминокислота обеспечивает должное усвоение кальция и его доставку в костную ткань, в сочетании с пролином и витамином С, лизин предупреждает образование липопротеинов.

Лизин в организме человека также служит исходным веществом для синтеза карнитина.

Соя, мясо (индейка, свинина, говядина), сыр твердый, кальмар филе, рыба (семга, горбуша, карп, треска), чечевица, маш. Метионин Метионин – незаменимая аминокислота, служащая в организме донором метильных групп (в составе S-аденозил-метионина) при биосинтезе, в том числе, адреналина и холина, является источником серы при биосинтезе цистеина.

Метионин является основным поставщиком сульфура, предотвращающего расстройства в формировании ногтей, кожи и волос, усиливает производство лецитина печенью, участвует в процессах образования аммиака, очищая от него мочу (что приводит к понижению нагрузок на мочевой пузырь), способствует понижению уровня холестерина, участвует в выводе тяжелых металлов из организма.

Мясо (индейка, свинина), сыр твердый, рыба (семга, горбуша, карп, треска), креветки филе. Треонин Треонин – незаменимая аминокислота, необходимая для биосинтеза глицина и серина (аминокислот, отвечающих за производство коллагена, эластина и мышечной ткани), для улучшения состояние сердечно-сосудистой системы, печени, центральной нервной системы, выполняет иммунную функцию. Также треонин укрепляет кости, повышает прочность эмали зубов . Соя, рыба (горбуша, семга), фасоль белая, сыр (моцарелла, твердый), чечевица, мясо (индейка, свинина), горох, печень говяжья. Триптофан Триптофан – незаменимая аминокислота, участвующая в гидрофобных и стэкинг-взаимодействиях, являющаяся биологическим прекурсором серотонина (из которого затем может синтезироваться мелатонин) и ниацина (витамина B) .

Триптофан распадается до серотонина – нейромедиатора, погружающего человека в сон. Также данная аминокислота способствует укреплению иммунной системы, совместно с лизином участвует в понижении уровня холестерина, уменьшает риск спазмов сердечной мышцы артерий.

Сыр (моцарелла, твердый), соя, кальмар филе, фасоль белая, орехи (арахис, миндаль), горох, маш, мясо (индейка, свинина, курица), печень говяжья, рыба (горбуша, семга, сельдь, карп, треска), чечевица, творог, яйцо перепелиное, грибы белые. Аргинин Аргинин – незаменимая (для детей ) аминокислота, являющаяся ключевым метаболитом в процессах азотистого обмена, участвующая в связывании аммиака.

Аргинин замедляет развитие опухолей и раковых образований, способствует выделению гормона роста, укреплению иммунной системы, очищает печень. Также аргинин способствует выработке спермы.

Орехи (арахис, миндаль, кедровые, грецкие, фундук), чечевица, маш, горох, кальмар филе, мясо (индейка, свинина), фасоль белая, горбуша. Гистидин Гистидин – незаменимая (для детей ) аминокислота, входящая в состав активных центров множества ферментов, являющаяся предшественником в биосинтезе гистамина, способствующая росту и восстановлению тканей.

Гистидин играет важную роль в метаболизме белков, в синтезе гемоглобина, эритроцитов и лейкоцитов, является одним из важнейших регуляторов свертывания крови.

Соя, мясо (свинина, говядина, индейка), печень говяжья, сыр твердый, чечевица, маш, фасоль белая, орехи (арахис, миндаль), рыба (семга, горбуша, карп). Фенилаланин Фенилаланин – незаменимая аминокислота, участвующая в стэкинг– и гидрофобных взаимодействиях, играющая значимую роль в фолдинге белка и стабилизации белковых структур, являющаяся составной частью функциональных центров.

Фенилаланин используется организмом для производства тирозина, эпинефрина (адреналина), тироксина и норэпинефрина (норадреналина, вещества, передающего сигналы от нервных клеток к головному мозгу). Кроме того, данная аминокислота подавляет аппетит и снимает боль.

Масло сливочное, грибы белые, сметана, сливки, молоко (козье, коровье), кефир, хлеб (пшеничный, ржаной), кальмар филе, крупа (рисовая, перловая).

Заменимые аминокислоты

*) Указана наиболее значимая биологическая роль заменимой аминокислоты в организме человека.

**) Указаны продукты питания с наибольшим содержанием заменимой аминокислоты.

Аминокислота Биологическая роль в организме (*) Содержание в продуктах питания (**) Последствия дефицита аминокислоты Последствия переизбытка аминокислоты Глицин Глицин – заменимая простейшая аминокислота, являющаяся исходным веществом для синтеза других аминокислот, донором аминогруппы при синтезе гемоглобина.

Глицин содержится во всех тканях, принимает активное участие в процессах обеспечения кислородом новых клеток, является важным участником выработки гормонов, ответственных за усиление иммунной системы (через участие в синтезе антител (иммуноглобулинов).

Кроме гемоглобина, производные глицина участвуют в образовании коллагена, глюкагона, глутатиона, креатина, лецитина.

Также, из данной аминокислоты, в живых клетках синтезируются пуриновые основания и порфирины.

В организме человека глицин может синтезироваться из холина (витамина группы B), а также из треонина и серина.

Говядина, желатин, рыба, печень трески, яйцо куриное, творог, арахис. Ослабевание соединительной ткани, беспокойство, нервозность, рассеянное внимание, депрессия, возникновение чувства усталости. Гиперактивность нервной системы. Аланин Аланин – заменимая ациклическая аминокислота, легко превращающаяся в печени в глюкозу и наоборот , являющаяся одним из основных источников энергии центральной нервной системы, головного мозга, мышц, выступает основным компонентом соединительной ткани.

Аланин укрепляет иммунную систему путем выработки антител, активно участвует в метаболизме сахаров и органических кислот.

При катаболизме аланин служит переносчиком азота из мышц в печень (для синтеза мочевины).

Значительное количество аланина содержится в крови, оттекающей от кишечника и мышц. Из крови аминокислота извлекается в основном печенью (в гепатоцитах используется для синтеза аспарагиновой кислоты трансаминированием с оксалоацетатом).

В организме человека аланин синтезируется из разветвленных аминокислот и пировиноградной кислоты.

Мясо (говядина, конина, баранина, индейка), сыры (твердый, козий, брынза), яйцо куриное, филе кальмара. Гипогликемия (пониженный уровень сахара в крови), при существенных физических нагрузках – распад мышечной ткани, повышенная, ослабление иммунной системы.

Систематический дефицит аминокислоты является фактором риска мочекаменной болезни.

Синдром хронической усталости, боль в суставах, мышечная боль, инфицирование вирусом Эпштейна-Барр (с которым ассоциируется ряд заболеваний, в том числе: герпес, гепатит, рассеянный склероз, назофарингеальная карцинома, лимфогранулематоз). Пролин Пролин – заменимая гетероциклическая аминокислота, наибольшее количество которой находится в белке соединительной ткани – коллагене.

В организме пролин синтезируется из глутаминовой кислоты.

Хлеб (ржаной, пшеничный), рис, мясо (говядина, баранина), рыба (тунец, сельдь), твердые сыры. Повышенная утомляемость, анемия, мышечная дистрофия, снижение мозговой активности, менструальные и головные боли. В целом не имеет последствий, так как аминокислота хорошо усваивается организмом. Серин Серин – заменимая гидроксиаминокислота, участвующая в образовании активных центров ряда ферментов (пептидгидролаз, эстераз), обеспечивая их функцию, принимающая активное участие в усилении иммунной системы (через обеспечение ее антителами).

Серин участвует в биосинтезе триптофана, метионина, цистеина и глицина.

В организме человека серин может быть синтезирован из треонина, а также из глицина (в почках).

Соя, яйцо куриное, молоко (коровье, кумыс), творог, твердые сыры, мясо (говядина, баранина, куриное), рыба (сардина, скумбрия, сельдь). Замедление ресинтеза гликогена, повышенная утомляемость, снижение работоспособности. Гипергликемия (повышенный уровень сахара в крови), повышенный уровень гемоглобина, гиперактивность нервной системы. Цистеин Цистеин – заменимая серосодержащая аминокислота, играющая важную роль в процессах формирования тканей кожи, имеющая значение для дезинтоксикационных процессов.

Цистеин входит в состав ^5,-кератинов (основного белка волос, кожи, ногтей), способствует формированию коллагена и улучшает эластичность и текстуру кожи.

Цистеин является одним из мощнейших антиоксидантов (при одновременном приеме селена и витамина С, антиоксидантное действие аминокислоты существенно усиливается).

Аминокислота участвует в процессах переаминирования, синтезе глутатион пероксидазы, обмене веществ хрусталика глаза, а также в активизации лимфоцитов и лейкоцитов.

В организме человека цистеин может синтезироваться из серина (с участием метионина как источника серы), витамина B6, АТФ.

Хлеб (пшеничный, кукурузный), яйцо куриное, соя, горох, мясо (куриное, свинина), соя, рис. Образование цистеиновых мочевых камней, развитие катаракты, трещины на слизистых оболочках, выпадение волос, ломкость ногтей, сухость кожи. Нарушения работы тонкого кишечника, сгущение крови, раздражительность. Аспарагиновая кислота (аспартат) Аспарагиновая кислота – заменимая алифатическая аминокислота, играющая важную роль в обмене азотистых веществ, участвующая в образовании мочевины и пиримидиновых оснований, выполняющая роль нейромедиатора в центральной нервной системе.

Аспарагиновая кислота оказывает иммуномодулирующее действие, нормализует баланс возбуждения и торможения в центральной нервной системе, повышает физическую выносливость, способствует превращению углеводов в глюкозу и последующему запасанию гликогена.

Благодаря аспарагиновой кислоте повышается проницаемость клеточных мембран для ионов магния и калия.

В организме человека аспартат синтезируется результате гидролиза аспарагина либо изомеризацией треонина в гомосерин с последующим его окислением.

Спаржа, соя, яйцо куриное, картофель, томаты, мясо (куриное, говядина). Снижение работоспособности, ухудшение памяти, депрессия. Сгущение крови, повышенная агрессивность, гиперактивность нервной системы. Аспарагин Аспарагин – амид аспарагиновой кислоты, из которого производится аспарагиновая кислота. Молочные продукты (молоко коровье, сыворотка), мясо (куриное, говядина), яйцо куриное, спаржа, томаты Те же, что и для аспартата Те же, что и для аспартата Глутаминовая кислота (глутамат) Глутаминовая кислота – заменимая алифатическая дикарбоновая аминокислота, содержание которой в организме составляет до 25% от всех аминокислот. Глутаминовая кислота играет важную роль в азотистом обмене, является нейромедиаторной аминокислотой.

Глутамат участвует в синтезе незаменимого гистидина, нуклеиновых кислот, фолиевой кислоты, в синтезе серотонина (через триптофан), повышает активность парасимпатической нервной системы (через выработку ацетилхолина), стимулирую, тем самым в организме анаболические процессы.

Сыр пармезан, зеленый горошек, мясо (цыпленка, утки, говядина, свинина), рыба (форель, треска), томаты, кукуруза. Нарушение работы желудочно-кишечного тракта, проблемы с центральной нервной и вегетативной нервной системами, ослабление иммунитета, депрессия, ухудшение памяти Сгущение крови, нарушения работы печени, глаукома, тошнота, головная боль. Глутамин Глутамин – амид моноаминодикарбоновой глутаминовой кислоты, в растворе медленно гидролизующийся до глутаминовой кислоты. Те же, что и для глутамата Те же, что и для глутамата Те же, что и для глутамата Тирозин Тирозин – заменимая ароматическая альфа-аминокислота, входящая в состав ферментов, во многих из которых именно тирозину отведена ключевая роль в ферментативной активности и ее регуляции.

Из тирозина синтезируются ДОФА, тиреоидные гормоны (трийодтиронин, тироксин).

Благодаря тирозину подавляется аппетит, уменьшается отложение жиров, вырабатывается меланин, улучшается функция гипофиза, щитовидной железы и надпочечников, повышается либидо.

В организме человека тирозин образуется из фенилаланина (преобразование аминокислоты в обратном направлении невозможно).

Мясо, рыба, соя, бананы, арахис, яйцо. Гипотиреоз, депрессия (вследствие дефицита норадреналина), синдром беспокойных ног, понижение артериального давления, температуры тела. Избыток тирозина утилизируется.

Классификация аминокислот на основе полярности боковых цепей

Свойства аминокислотных остатков в составе белков являются решающими для структуры и функционирования последних. Аминокислоты существенно отличаются по полярности боковых цепей (групп), и, следовательно, особенностями взаимодействия с молекулами воды (по ). На основании этих различий, протеиногенные аминокислоты классифицируются на четыре группы:

  • аминокислоты с неполярными боковыми цепями,
  • аминокислоты с полярными незаряженными боковыми цепями (иногда их разделяют на аминокислоты с неполярными алифатическими и неполярными циклическими боковыми цепями),
  • аминокислоты с полярными отрицательно заряженными боковыми цепями,
  • аминокислоты с полярными положительно заряженными боковыми цепями.

Иногда последние две группы объединяют в одну.

Аминокислоты с неполярными боковыми группами

В группу аминокислот с неполярными боковыми группами входит девять аминокислот, боковые группы которых являются неполярными и гидрофобными:

  • Простейшей в этой группе аминокислот является глицин, вообще не имеющий боковой цепи (около ^5,-атома карбона, кроме карбоксильной и аминогруппы находятся два атома водорода). Хотя глицин и классифицируется как неполярная аминокислота, он не влияет на обеспечение гидрофобных взаимодействий в молекулах белков,
  • Аланин, лейцин и изолейцин имеют алифатические углеводородные боковые группы – метильную, бутильную и изобутильную,
  • Метионин является серосодержащей аминокислотой, боковая цепь которой представлена неполярным тиоловым эфиром,
  • Иминокислота пролин содержит характерную пиролидиновую циклическую структуру, в составе которой вторичная аминогруппа (иминогруппа) содержится в фиксированной конформации. Поэтому участки полипептидных цепей, содержащих пролин, наименее гибкие,
  • В состав молекул фенилаланина и триптофана входят крупные неполярные циклические боковые группы – фенильная и индольная,
  • Девятой аминокислотой с неполярной боковой группой является валин.

Аминокислоты с полярными боковыми цепями вносят вклад в структуру полипептидов благодаря гидрофобным взаимодействиям: например, в составе водорастворимых глобулярных белков они группируются внутри молекулы. Неполярные группы этих аминокислот также образуют поверхности контакта интегральных мембранных белков с гидрофобными частями липидных мембран.

Аминокислоты с полярными незаряженными боковыми группами

В группу аминокислот, имеющих полярные незаряженные боковые группы входят:

  • серин,
  • треонин,
  • аспарагин,
  • глутамин,
  • тирозин,
  • цистеин.

Аминокислоты серин и треонин содержат гидроксильную группу, аспарагин и глутамин – амидную, тирозин – фенольную.

В состав цистеина входит тиольная группа –SH, благодаря чему две молекулы (или их остатки в составе пептидов) цистеина могут соединяться дисульфидной связью, формирующейся путем окисления –SH групп. Подобные связи важны для формирования и поддержания структуры белков. Поскольку две молекулы цистеина соединены дисульфидной связью, ранее цистеин считались самостоятельной аминокислотой (соединение называлось цистином, сегодня этот термин употребляется редко).

Аминокислоты с полярными отрицательно заряженными боковыми группами

Существует две протеиногенных аминокислоты с полярными отрицательно заряженными боковыми группами, имеющие суммарный отрицательный заряд при физиологическом pH (7,0): аспарагиновая и глутаминовая кислоты. Обе имеют по дополнительной карбоксильной группе, их ионизированные формы называются аспартатом и глутаматом. Амиды этих аминокислот – аспарагин и глутамин также входят в состав белков.

Аминокислоты с полярными положительно заряженными боковыми группами

В группу протеиногенных аминокислот с полярными положительно заряженными боковыми группами (при физиологических значениях pH = 7,0) входят:

  • лизин,
  • аргинин,
  • гистидин.

Лизин имеет дополнительную первичную аминогруппу в ^9,-положении. В состав аргинина входит гуанидиновые группировки, а гистидин содержит имидазольное кольцо. Из всех протеиногенных аминокислот, только гистидин имеет группу, ионизирующуюся при физиологическом pH (pK a = 6,0), поэтому его боковая цепь при pH 7,0 может быть нейтральной или положительно заряженной. Благодаря данному свойству, гистидин входит в состав активных центров многих ферментов, участвует в катализе химических реакций как донор / акцептор протонов.

Классификация аминокислот по функциональным группам

Функциональная группа – это структурный фрагмент органической молекулы (группы атомов), определяющий ее химические свойства. Старшая функциональная группа соединения является критерием его отнесения к тому или иному классу органических соединений.

Аминокислоты классифицируются по четырем функциональным группам:

  • ароматической,
  • алифатической,
  • гетероциклической,
  • иминокислотной.

Ароматичностью характеризуется совокупность энергетических и структурных и свойств отдельных циклических молекул, содержащих систему сопряженных двойных связей. Благодаря ароматичности, сопряженное (бензольное) кольцо ненасыщенных связей проявляет аномально высокую стабильность, большую, чем та, которую можно было бы ожидать только при одном сопряжении. Соответственно, ароматическая аминокислота – это аминокислота, содержащая ароматическое кольцо.

К ароматическим аминокислотам относятся:

  • гистидин,
  • триптофан,
  • тирозин,
  • фенилаланин,
  • антраниловая кислота.

Алифатические соединения – соединения, не содержащие ароматических связей.

Алифатические аминокислоты:

  • К моноаминомонокарбоновым (содержащим 1 аминогруппу и 1 карбоксильную группу) аминокислотам относятся лейцин, изолейцин, валин, аланин и глицин,
  • К оксимоноаминокарбоновым аминокислотами (содержащим гидроксильную группу, 1 аминогруппу и 1 карбоксильную группу) относятся треонин и серин,
  • К моноаминодикарбоновым (содержащим 1 аминогруппу и 2 карбоксильные группы) аминокислотам, за счет второй карбоксильной группы несущим в растворе отрицательный заряд, относятся аспартат и глутамат,
  • К амидам моноаминодикарбоновых аминокислот относятся глутамин и аспарагин,
  • К диаминомонокарбоновым (содержащим 2 аминогруппы и 1 карбоксильную группу) аминокислотам, несущим в растворе положительный заряд, относятся аргинин и лизин,
  • К серосодержащим аминокислотам относятся метионин и цистеин.

Гетероциклические соединения, гетероциклы – органические соединения, содержащие циклы, в составе которых наряду с углеродом, присутствуют атомы и других элементов.

К гетероциклическим аминокислотам относятся:

  • пролин, оксипролин (содержащие в своем составе гетероцикл пирролидин),
  • гистидин (содержащий в своем составе гетероцикл имидазол),
  • триптофан (содержащий в своем составе гетероцикл индол).

Иминокислоты – органические кислоты, содержащие в молекуле двухвалентную иминогруппу (=NH).

К иминокислотам относятся гетероциклические оксипролин и пролин.

Классификация аминокислот по аминоацил-тРНК-синтетазе

Аминоацил-тРНК-синтетаза, АРСаза, Aminoacyl tRNA synthetase, aaRS – фермент синтетаза (лигаза), катализирующий образование аминоацил-тРНК в реакции определенной аминокислоты с соответствующей ей молекулой тРНК. Аминоацил-тРНК-синтетазы обеспечивают соответствие .

тРНК (нуклеотидным триплетам генетического кода), включаемого в белок аминокислот, обеспечивая, тем самым, правильность происходящего в дальнейшем считывания генетической информации с мРНК во время синтеза белков на рибосомах. Для каждой аминокислоты существует собственная аминоацил-тРНК-синтетаза.

Все аминоацил-тРНК-синтетазы произошли от двух предковых форм и объединены на основе структурного сходства в два класса, отличающихся между собой по способу связывания и аминоацилирования тРНК, структуре аминоацилирующего (главного) домена, доменной организации.

Аминоацилирующий домен аминоацил-тРНК-синтетаз 1 класса образован , в основе которой лежит параллельный . Ферменты 1 класса являются, как правило, мономерами.

Для следующих аминокислот существуют аминоацил-тРНК-синтетазы 1 класса:

  • триптофан,
  • тирозин,
  • аргинин,
  • глутамин,
  • глутамат,
  • метионин,
  • цистеин,
  • лейцин,
  • изолейцин,
  • валин.

Ферменты 2 класса имеют в основе структуры аминоацилирующего домена антипараллельный ^6,-лист. Как правило, эти ферменты имеют четвертичную структуру (являются димерами).

Для следующих аминокислот существуют аминоацил-тРНК-синтетазы 2 класса:

  • фенилаланин,
  • гистидин,
  • аспарагин,
  • аспартат,
  • треонин,
  • серин,
  • пролин,
  • аланин,
  • глицин.

Для лизина существуют аминоацил-тРНК-синтетазы обоих классов.

Классификация аминокислот по путям биосинтеза

Биосинтез – это процесс синтеза природных органических соединений живыми организмами. Путь биосинтеза соединения – это последовательность реакций, как правило, генетически детерминированных (ферментативных), приводящих к образованию органического соединения. Иногда встречаются и спонтанные реакции, обходящиеся без ферментативного катализа, например: в процессе биосинтеза аминокислоты лейцин, одна из реакций является спонтанной и протекает без участия фермента. Биосинтез одних и тех же соединений может идти самыми различными путями из различных или из одних и тех же исходных соединений.

Одна и та же аминокислота может образовываться разными путями, при этом разные пути могут иметь схожие этапы. На основании существующих представлений о семействах аминокислот аспартата, глутамата, серина, , и шикимата , можно классифицировать членов этих семейств по путям биосинтеза следующим образом.

Семейство аспартата :

  • аспарагиновая кислота,
  • аспарагин,
  • лизин,
  • метионин,
  • изолейцин,
  • треонин.

Семейство глутамата :

  • глутаминовая кислота,
  • глутамин,
  • пролин,
  • аргинин.

Семейство пирувата :

  • лейцин,
  • валин,
  • аланин.

Семейство серина :

  • серин,
  • глицин,
  • цистеин.

Семейство пентоз :

  • триптофан,
  • тирозин,
  • фенилаланин,
  • гистидин.

Семейство шикимата :

  • триптофан,
  • тирозин,
  • фенилаланин.

Несмотря на то, что у семейств пентоз и шикимата частично общие члены, по путям биосинтеза, из-за частностей, их правильнее классифицировать именно указанным образом.

Классификация аминокислот по характеру катаболизма

Катаболизм, диссимиляция, энергетический обмен – процессы разложения (метаболического распада) на более простые вещества или окисления какого-либо вещества, протекающие обычно с высвобождением энергии в виде или тепла. В результате катаболических реакций сложные вещества утрачивают свою специфичность для данного организма в результате распада до более простых (например, белки распадаются до аминокислот с выделением тепла).

По характеру продуктов катаболизма, протеиногенные аминокислоты классифицируются по трем группам (в зависимости от пути биологического распада):

1. Глюкогенные аминокислоты – при распаде дающие , не повышающие уровень кетоновых тел, способные относительно легко становиться субстратом для глюконеогенеза: оксалоацетат, фумарат, сукцинил-КоА, ^5,-кетоглутарат, пируват. К глюкогенным аминокислотам относятся гистидин, аргинин, глутамин, глутаминовая кислота, аспарагин, аспарагиновая кислота, метионин, цистеин, треонин, серин, пролин, валин, аланин и глицин,

2. Кетогенные аминокислоты – распадающиеся до ацетоацетил-КоА и ацетил-КоА, повышающие уровень кетоновых тел в крови, преобразующиеся, в первую очередь, в липиды. К кетогенным аминокислотам относятся лизин и лейцин,

3. При распаде глюко-кетогенных (смешанных) аминокислот образуются метаболиты обоих типов. К глюко-кетогенным аминокислотам относятся триптофан, тирозин, фенилаланин и изолейцин.

«Миллеровские» аминокислоты

«Миллеровские» аминокислоты – это аминокислоты, получающиеся в условиях, близких к эксперименту Миллера – Юри, проведенному Стэнли Ллойдом Миллером (Stanley Lloyd Miller) и Гарольдом Клейтоном Юри (Harold Clayton Urey) в 1953 году. В ходе эксперимента моделировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Эксперимент Миллера – Юри, фактически, являлся экспериментальным тестом гипотезы того, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, способным привести к синтезу органических молекул из неорганических. В результате эксперимента, длившегося неделю, были получены (точнее установлено наличие при первичном анализе результатов) пять аминокислот, а также липиды, сахара и предшественники нуклеиновых кислот.

В 2008 году был проведен повторный, более точный анализ результатов эксперимента, благодаря которому было установлено, что «миллеровских» аминокислот не 5, а 22 (включая глутаминовую кислоту, аспарагиновую кислоту, треонин, серин, пролин, лейцин, изолейцин, валин, аланин, глицин).

«Нестандартные» аминокислоты

Нестандартные («неканонические») аминокислоты – это аминокислоты, обнаруженные в составе белков, встречающихся во всех живых организмах, при этом не входящие в «основной» список 20 протеиногенных ^5,-аминокислот, кодируемых универсальным генетическим кодом.

Всего существует 23 протеиногенные аминокислоты, объединяющиеся в пептидные цепи (полипептиды), являющиеся строительным материалом для построения белков. Из 23 протеиногенных, лишь 20 кодируются непосредственно триплетными кодонами в генетическом коде.

Оставшиеся три относятся к «нестандартным» или «неканоническим»):

  1. селеноцистеин – аналог цистеина (с заменой атома серы на атом селена), присутствует во многих прокариотах и в большинстве эукариотов,
  2. пирролизин – производное аминокислоты лизин, встречается у метаногенных организмов и других эукариотов,
  3. N-формилметионин – модифицированный метионин, является инициаторной аминокислотой всех полипептидных цепей прокариот (за исключением архебактерий), по окончании синтеза отщепляется от полипептида.

Если исключить N-формилметионин, то к протеиногенным можно причислить только 22 аминокислоты. Нестандартные, трансляционно включаемые селеноцистеин и пирролизин, иногда причисляются к стандартным в качестве 21-й и 22-й аминокислоты. Дело в том, что пирролизин и селеноцистеин включаются в белки при помощи уникального синтетического механизма: пирролизин кодируется с кодоном , который в других организмах обычно выполняет функцию стоп-кодона (ранее считалось, что за кодоном UAG следует PYLIS последовательность ), а селеноцистеин образуется, когда транслируемый мРНК включает SECIS элемент , вызывающий кодон UGA вместо стоп-кодона. Таким образом, относить или нет пирролизин и селеноцистеин к нестандартным аминокислотам – зависит от методологии классификации, в любом случае обе аминокислоты являются протеиногенными. В данной статье, указанные аминокислоты относятся к нестандартным.

Нестандартные аминокислоты могут включаться в полипептидную цепь, как в процессе биосинтеза белка, так и в процессе посттрансляционной модификации, то есть дополнительных ферментативных реакций (иными словами, в результате посттрансляционных модификаций из стандартных аминокислот возникают нестандартные).

К первой группе нестандартных аминокислот, появляющихся в результате биосинтеза, относятся селеноцистеин и пирролизин, входящие в состав белков при считывании стоп-кодона специализированными тРНК.

Особым примером нестандартных аминокислот является редкая аминокислота селеноцистеин, производная цистеина, однако вместо атома серы содержащая селен. В отличие от многих других нестандартных аминокислот, входящих в состав белков, селеноцистеин образуется не в результате модификации остатка в уже готовой полипептидной цепи, а включается в него во время трансляции. Селеноцистеин кодируется кодоном UGA, что, при обычных условиях, означает завершение синтеза.

Подобно селеноцистеину, пирролизин, использующийся некоторыми метаногенными бактериями при выработке метана, кодируется в этих организмах стоп-кодоном.

Ко второй группе нестандартных аминокислот, появляющихся в результате посттрансляционных модификаций, относятся: 4-гидроксипролин, 5 – гидроксилизин, десмозин, N-метиллизин, цитруллин, а также D-изомеры стандартных аминокислот.

Благодаря способности отдельных остатков аминокислот модифицироваться в составе полипептидных цепей происходит образование нестандартных аминокислот, в частности, 5-гидроксилизина и 4-гидроксипролина, входящих в состав белка соединительной ткани коллагена (4-гидроксипролин, кроме того, присутствует в клеточных стенках растений). Другая «нестандартная» аминокислота – 6-N-метиллизин является составной частью сократительного белка миозина, а сложная нестандартная аминокислота десмозин образуется из четырех остатков лизина и присутствует в фибриллярных белках эластина.

Отдельные белки, связывающие ионы кальция, например такие как протромбин, содержат ^7,-карбоксиглутаминовую кислоту.

Многие остатки аминокислот могут являться временно посттрансляционно модифицированными, в их задачи входит регуляция функции белков. К подобным модификациям относятся присоединения фосфатных, метильных, ацетильных, аденильных, АДФ-рибозильных и других групп.

Нестандартные аминокислоты низин и аламетицин, синтезирующиеся бактериями и растениями, входят в состав пептидных антибиотиков, лантионин – моносульфидный аналог цистина – совместно с ненасыщенными аминокислотами входит в состав лантибиотиков (пептидных антибиотиков бактериального происхождения).

D-аминокислоты входят в состав коротких (до 20 остатков) пептидов, синтезируемых энзиматично, а не на рибосомах. Данные пептиды в большом количестве встречаются в составе клеточных стенок бактерий, благодаря чему последние являются менее чувствительными к действию протеаз. D-аминокислоты содержат некоторые пептидные антибиотики, например валиномицин, грамицидин A, актиномицин D.

В общей сложности, в живых клетках встречается около 700 различных аминокислот, многие из которых выполняют самостоятельные функции:

  • орнитин и цитруллин являются ключевыми метаболитами в цикле мочевины и в пути биосинтеза аргинина,
  • гомоцистеин является промежуточным продукта метаболизма отдельных аминокислот,
  • S-аденозилметионин выполняет функции метиллирующего агента,
  • 1-аминоциклопропан-1-карбоксильная кислота (АСС) – небольшая по молекулярной массе, циклическая аминокислота, выступает промежуточным продуктом в синтезе растительного гормона этилена.

У растений, грибов и бактерий найдено большое количество аминокислот, функции которых до конца не выяснены, однако поскольку большинство из них ядовиты (например, азасерин и ^6,-цианоаланин), они могут обладать защитной функцией.

Некоторые из нестандартных аминокислот найдены в метеоритах, особенно в карбоновых хондритах.

Нестандартные аминокислоты, обнаруженные в гидролизатах природных белков:

Замещенные аминокислоты Дата первого выделения Аминокислота Источник 1902 4-гидроксипролин желатин 1930 цитруллин белок сердцевины волос 1931 3,5-дийодтирозин тиреоглобулин 1940 ^8,-гидроксилизин желатин 1948 3-йодтирозин тиреоглобулин 1951 3-бромтирозин склеропротеин горгонии 1953 3,3, 5-трийодтиронин тиреоглобулин 1959 ^9,-N-метиллизин флагеллин из сальмонеллы, гистон тимуса теленка 1962 3-гидроксипролин коллаген 1967 ^9,– (N, N)-диметиллизин гистон тимуса теленка 1967 3-метилгистидин актин мускула кролика 1968 ^9,– (N, N, N)-триметиллизин отдельные гистоны 1968 N G -метиларгинин гистон тимуса телёнка 1969 3,4-дигидроксипролин 1970 ^9,– (N, N, N)-триметил-^8,-гидроксилизин клеточная стенка диатомовых водорослей 1971 N G , N G -диметиларгинин 1971 N G , N’ G -диметиларгинин эцифалитогенный белок быка (прион) 1971 3-бром-5-хлортирозин склеропротеин волнистого рожка 1971 гипузин фактор, инициирующий трансляцию EIF5A 1972 3-хлортирозин кутикулярный белок саранчи обыкновенной, склеропротеин волнистого рожка 1972 3,5-дихлортирозин кутикулы мечехвоста 1972 тироксин тиреоглобулин 1978 ^7,-карбоксиглутаминовая кислота протромбин быка Связанные между собой аминокислоты (олигопептидомиметики) Дата первого выделения Аминокислота Источник 1963 изодесмозин эластин 1963 десмозин эластин 1965 лизиннорлейцин эластин 1967 дитирозин резилин

Подавляющее большинство аминокислот можно получить при гидролизе белков или результате химических реакций.

Функции аминокислот

В дополнение к синтезу белков, стандартные и нестандартные аминокислоты в организме человека выполняют множество иных важных биологических функций:

  • Глицин (анион глутаминовой кислоты) используется в качестве нейромедиатора при нервной передаче через химические синапсы,
  • Функции нейромедиаторов также выполняет нестандартная аминокислота гамма-аминомасляная кислота, являющаяся продуктом декарбоксилирования глутамата, дофамин – производное тирозина, и серотонин, образующийся из триптофана,
  • Гистидин является предшественником гистамина – локального медиатора воспалительных и аллергических реакций,
  • Йодосодержащий гормон щитовидной железы тироксин образуется из тирозина,
  • Глицин является одним из метаболических предшественников порфиринов (таких как дыхательный пигмент гем).

Применение аминокислот

В больницах и клиниках аминокислоты применяются в качестве парентерального питания ). Цистеин, участвующий в метаболизме хрусталика глаза, является компонентом глазных капель Вицеин (в комплексе с глутаминовой кислотой).

В пищевой промышленности, аминокислоты применяются в качестве вкусовых добавок. Например, натриевая соль глутаминовой кислоты (глутамат натрия) известна как «пищевая добавка E621» или «усилитель вкуса», также глутаминовая кислота является весьма важным компонентом при замораживании и консервировании. Благодаря присутствию глицина, метионина и валина, во время термической обработки продуктов питания удается получить специфические ароматы хлебобулочных и мясных изделий. Аминокислоты цистеин, лизин и глицин используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту, замедляющих пероксидное окисление липидов. Кроме того глицин применяется при производстве безалкогольных напитков и приправ. D-Триптофан используется при производстве диабетического питания.

Аминокислоты также являются компонентами спортивного питания (в изготовлении которого применяется, как правило, аланин, лизин, аргинин и глутамин), использующегося спортсмена, а также людьми, занимающимися бодибилдингом, пауэрлифтингом, фитнесом.

В ветеринарии и в животноводстве аминокислоты применяются для лечения и питания животных: многие растительные белки содержат лизин в крайне незначительных объемах, соответственно, лизин добавляется в корма сельскохозяйственных животных для сбалансирования по белковому питанию.

В сельском хозяйстве аминокислоты валин, глутаминовая кислота и метионин применяются для защиты растений от болезней, а глицин и аланин, обладающие гербицидным действием, используются для борьбы с сорняками.

Благодаря способности аминокислот к образуются полиамиды – белки, пептиды, а также энант, капрон и нейлон. Последние три применяются в промышленности при производстве корда, прочных тканей, сетей, канатов, веревок, трикотажных и чулочных изделий.

В химической промышленности аминокислоты используются в производстве добавок к моторному топливу, моющих средств.

Кроме того, аминокислоты применяются в микробиологической промышленности и при производстве косметики.

Родственные аминокислотам соединения

Существует ряд соединений, способных выполнять отдельные биологические функции аминокислот, однако ими не являющимися. Наиболее известным «родственным» аминокислотам соединением является таурин.

Таурин, 2-Аминоэтансульфоновая кислота – органическое соединение, , образующаяся в организме человека из цистеина, в небольших количествах присутствующая в тканях и желчи. Кроме того, в головном мозге таурин выполняет функции нейромедиаторной аминокислоты, тормозящей синаптическую передачу . Сульфокислота оказывает кардиотропное действие, обладает противосудорожной активностью.

В молекуле таурина карбоксильная группа отсутствует, несмотря на это, данную сульфокислоту, зачастую (ошибочно) называют серосодержащей аминокислотой. В физиологических условиях (pH = 7,3) таурин практически полностью существует в виде цвиттер-иона.

Примечания

Примечания и пояснения к статье «Аминокислоты».

  • Аминогруппа , аминная группа – функциональная химическая одновалентная группа –NH 2 , органический радикал, содержащий один атом азота и два атома водорода. Аминогруппы содержится в органических соединениях – аминоспиртах, аминах, аминокислотах, других соединениях.
  • Мономер (от древнегреческий _6,a2,_7,_9,`2, – «один» и _6,^1,`1,_9,`2, – «часть») – это низкомолекулярное вещество, образующее полимер в реакции полимеризации. В результате полимеризации природных мономеров – аминокислот, образуются белки. Мономерами также называются структурные единицы (повторяющиеся звенья) в составе полимерных молекул.
  • Белки , протеины – высокомолекулярные органические вещества, состоящие из альфа-аминокислот, объединенных пептидными связями. Существуют простые белки , при гидролизе распадающиеся только на аминокислоты, и сложные белки (протеиды, холопротеины), в которых содержится простетическая группа (подкласс кофакторов), при гидролизе сложных белков, кроме аминокислот, освобождается небелковая часть или продукты ее распада. Белки-ферменты катализируют (ускоряют) протекание биохимических реакций, оказывая значимое влияние на процессы метаболизма. Отдельные белки выполняют механическую или структурную функцию, образуя цитоскелет, сохраняющий форму клеток. Кроме того, белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Белки являются основой для создания мышечной ткани, клеток, тканей и органов у человека.
  • Посттрансляционная модификация – это ковалентная химическая модификация белка после его синтеза на рибосоме.
  • Метаболиты
  • Гомосерин , homoserine – природная аминокислота, схожая с серином, однако но не входящая в состав белков. Гомосерин является важным промежуточным соединением в клеточном метаболизме, например, в биосинтезе метионина и треонина.
  • Транспортная РНК , тРНК, Transfer RNA, tRNA – рибонуклеиновая кислота, функцией которой является транспортировка аминокислот к месту синтеза белка. тРНК принимают самое непосредственное участие в наращивании полипептидной цепи, присоединяясь (будучи в комплексе с аминокислотой) к кодону мРНК, обеспечивая, тем самым, необходимую для образования новой пептидной связи конформацию комплекса. Для каждой аминокислоты существует собственная тРНК.
  • По положению аминогруппы в структуре, аминокислоты подразделяются на ^5,-аминокислоты (аминогруппа присоединена к атому углерода, соседнему от атома углерода с карбоксильной группой), ^6,-аминокислоты (аминогруппа присоединена к атому углерода следующему через один после атома углерода с карбоксильной группой) и ^7,-аминокислоты (аминогруппа присоединена к атому углерода, соответственно расположенному через два атома углерода от карбоксильной группы).
  • Систематическое название – официальное название в рамках номенклатуры Международного союза теоретической и прикладной химии (IUPAC, ИЮПАК). Номенклатура ИЮПАК – система наименований химических соединений и описания науки химии в целом. Аминокислоты описываются номенклатурой органических соединений ИЮПАК по правилам так называемой Синей книги (Blue Book).
  • Сольволиз – реакция обменного разложения между растворенным веществом и растворителем. В отличие от сольватации, сольволиз приводит к образованию новых химических соединений определенного состава.
  • Амиды – производные оксокислот (минеральных и карбоновых), формально являющиеся продуктами замещения гидроксильных групп –OH кислотной функции на аминогруппу (незамещенную и замещенную). Амиды также рассматриваются как ацилпроизводные аминов. Все амиды содержат одну или несколько амидных групп –NH 2 .
  • Биоинформатика – совокупность подходов и методов, использующихся, в частности, в биофизике, биохимии, экологии, включающих в себя математические методы компьютерного анализа в сравнительной геномике, разработку программ и алгоритмов для предсказания пространственной структуры биополимеров, исследование стратегий, соответствующих вычислительных методологий, а также общее управление информационной сложности биологических систем. В биоинформатике используются методы прикладной математики, информатики и статистики.
  • Изоэлектрическая точка – см. раздел «Кислотно-основные свойства аминокислот / Изоэлектрическая точка» .
  • Индекс гидропатичности – это число, отражающее гидрофобные или гидрофильные свойства боковой цепи аминокислоты. Чем больше число, тем большей гидрофобностью обладает аминокислота. Термин предложен в 1982 году биохимиками Джеком Кайтом (Jack Kyte) и Расселом Дулиттлом (Russell Doolittle).
  • Амфотерность (от древнегреческого O36,_6,`6,a2,`4,^9,`1,_9,_3, – «обоюдный, двойственный») – способность отдельных соединений и химических веществ проявлять в зависимости от условий как основные, так и кислотные свойства. Амфолитами, будут, в том числе, вещества, имеющие в своем составе функциональные группы, способные быть акцепторами и донорами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты.
  • pH , водородный показатель, кислотность – мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, количественно выражающая его кислотность. Значение pH принято измерять в значениях от 0 до 14, где pH = 7,0 считается нейтральной кислотностью (нормальная физиологическая кислотность у человека также равна 7, однако критические границы находятся в диапазоне от 5 до 9 pH). Наиболее простой и доступный способ проверить pH организма – pH анализ мочи электрического заряда. Под изоэлектрической точкой аминокислоты подразумевается такое значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом, и, соответственно, в электрическом поле, аминокислота при таком pH наименее подвижна. Данное свойство можно использовать для разделения пептидов, белков и аминокислот.
  • Изомерия (от древнегреческих O88,`3,_9,`2, – «равный» и _6,^1,`1,_9,`2, – «часть, доля») – явление, заключающееся в существовании химических соединений – изомеров – одинаковых по молекулярной массе и атомному составу, при этом различающихся по расположению или строению и атомов в пространстве и, вследствие чего, по свойствам.
  • Энантиомеры (от древнегреческих O52,_7,^0,_7,`4,_3,_9,`2, – «противоположный» и _6,^1,`1,_9,`2, «мера, часть») – пара стереоизомеров, представляющих собой зеркальные отражения друг друга, не совмещаемые в пространстве. Классической примером энантиомеров являются ладони, имеющие одинаковую структуру, но различную пространственную ориентацию. Существование энантиомерных форм связано с наличием у молекулы свойства не совпадать в пространстве со своим зеркальным отражением (хиральности).
  • Эмиль Герман Фишер , Hermann Emil Fischer (9 октября 1852– 15 июля 1919) – немецкий химик, изучавший синтез фенилгидразина, который был им применен как качественный реактив на альдегиды и кетоны, синтез виноградного и фруктового сахара, занимался разработкой эфирного метода анализа аминокислот, что привело к открытию аминокислот валина, пролина и оксипролина, доказал сходство естественных пептонов с полипептидами. В 1902 году Фишер был удостоен Нобелевской премии по химии «за эксперименты по синтезу веществ с сахаридными и пуриновыми группами» .
  • Рибосома – основной немембранный органоид живой клетки, необходимый для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК) (данный процесс именуется трансляцией).
  • Рацемическая смесь стереоизомеров не обладает оптической активностью, образуется при смешивании L– и D-форм одной аминокислоты.
  • Франц Гофмейстер , Franz Hofmeister (30 августа 1850 – 26 июля 1922) – один из первых ученых, серьезно занявшихся изучением белков. Гофмейстер известен своими исследованиями солей, оказывающих влияние на растворимость и конформационную стабильность белков. Гофмейстер был первым, кто предположил, что полипептиды являются аминокислотами, соединенными пептидной связью (хотя, на самом деле, он открыл модель первичной структуры белка).
  • Фенилкетонурия (фенилпировиноградная олигофрения) – редкое наследственное (генетически обусловленное) заболевание, проявляющееся, как правило, в первый год жизни ребенка, связанное с нарушением метаболизма аминокислот, в основном фенилаланина. Фенилкетонурия сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжелому поражению центральной нервной системы, проявляющемуся, в частности, в нарушении умственного развития. Несмотря на то, что в названии болезни звучат кетоны (фенилкетонурия, где «фенил» – фенилаланин, «кетон» – кетоны, «урия» – моча), при данном заболевании кетоны с мочой не выделяются. Кетоны выступают продуктами обмена фенилаланина, в моче появляются фенилуксусная и фенилмолочная кислота.
  • Аминокислоты с разветвленными боковыми цепями, разветвленные аминокислоты, branched-chain amino acid, BCAA, группа протеиногенных (стандартных) аминокислот, характеризующихся разветвленным строением алифатической боковой цепи. К разветвленным аминокислотам относятся валин, изолейцин и лейцин. Аминокислоты с разветвленными боковыми цепями подвергаются катаболическим превращениям (в отличие от большинства других аминокислот, метаболизирующих в печени), главным образом, в почках, жировой ткани, нейронах, сердечной мышце и скелетных мышцах.
  • Кетоацидоз, диабетический кетоацидоз – вариант метаболического ацидоза, связанный с нарушением углеводного обмена. Кетоацидоз развивается в результате недостаточности гормона поджелудочной железы инсулина: повышенного уровня глюкозы и кетоновых тел в крови, образованных в результате липолиза (нарушения обмена жирных кислот) и дезаминирования аминокислот. Наиболее частой причиной развития выраженного кетоацидоза является сахарный диабет 1 типа . Существует недиабетический кетоацидоз (нервно-артритический диатез , мочекислый диатез, ацетонемический синдром у детей) – совокупность симптомов, обусловленных повышением концентрации кетоновых тел в плазме крови – патологическое состояние, встречающееся, как правило, у детей.
  • Коллаген , collagen — фибриллярный белок, основной структурный белок межклеточного матрикса, составляющий от 25 до 33% общего количества белка в организме (~6% массы тела). Синтез коллагена протекает в фибробласте и ряд стадий вне фибробласта. Будучи основой соединительной ткани организма (кость, сухожилие, дерма, хрящ, кровеносные сосуды, зубы), коллаген обеспечивает ее эластичность и прочность.

    Высокоспецифичным ферментом, расщепляющим пептидные связи в определенных участках спирализованных областей коллагена (с выделением свободной аминокислоты оксипролин, в частности) является коллагеназа . Образующиеся в результате разрушения коллагеновых волокон (под воздействием коллагеназы) аминокислоты участвуют в построении клеток и восстановлении коллагена.

    Коллагеназа широко используется в медицинской практике для лечения ожогов в хирургии и для лечения гнойных заболеваний глаз в офтальмологии. В частности, коллагеназа входит в состав полимерных дренирующих сорбентов «Асептисорб» (Асептисорб-ДК) производства компании «Асептика», применяющихся при лечении гнойно-некротических ран.

  • Зубная эмаль , tooth enamel — твердая минерализованная ткань белого или слегка желтоватого цвета, покрывающая снаружи коронку зуба и защищающая пульпу и дентин от воздействия внешних раздражителей. Зубная эмаль является самой твердой тканью в организме человека, что объясняется высоким содержанием в ней неорганических веществ — до 97 % (главным образом — кристаллов гидроксиапатита). Располагаясь в ротовой полости, естественная среда в которой — щелочная, зубная эмаль также нуждается в поддержке щелочного баланса. После каждого приема пищи, в результате расщепления углеводов, а также под влиянием различных бактерий, перерабатывающих остатки пищи и выделяющих кислоты, щелочная среда нарушается, следствием чего является разъедание эмали зубов кислотами, что и приводит к развитию кариеса. Нарушение целостности зубной эмали является одной из причин зубной боли Пируваты (соли пировиноградной кислоты) – важные химические соединения в биохимии, являющиеся конечным продуктом метаболизма глюкозы (сахара) в процессе гликолиза. Пируват может быть превращен обратно в глюкозу в процессе глюконеогенеза, в жирные кислоты или энергию через ацетил-кофермент А, в аминокислоту аланин, в этанол.
  • Шикиматный путь – метаболический путь, промежуточным метаболитом которого является шикимат (шикимовая кислота). Шикиматный путь отмечается как специализированный путь биосинтеза бензоидных ароматических соединений, благодаря которому синтезируются, в том числе, аминокислоты триптофан, тирозин, фенилаланин.
  • Биологический распад, биодеградация, биоразложение – разрушение сложных веществ в результате деятельности живых организмов.
  • Аденозинтрифосфат, АТФ – нуклеозидтрифосфат, играющий исключительно важную роль в обмене веществ и энергии в организмах, в первую очередь АТФ известен как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.
  • Метаболиты – промежуточные продукты обмена веществ (метаболизма) в живых клетках. Многие метаболиты оказывают регулирующее влияние на физиологические и биохимические процессы в организме. Метаболиты подразделяются на первичные (органические вещества, присутствующие во всех клетках организма и необходимые для жизнедеятельности, к ним относятся нуклеиновые кислоты, липиды, белки и углеводы) и вторичные (органические вещества, синтезируемые организмом, однако в репродукции, развитии или росте не участвующие). Классическим примером первичного метаболита является глюкоза.
  • Стоп-кодон, кодон терминации, stop codon, termination codon – единица генетического кода, триплет (тройка нуклеотидных остатков) в ДНК – кодирующий терминацию (прекращение) транскрипции (синтез полипептидной цепи). Стоп кодоны могут вызывать как обязательное прекращение синтеза, так и являться условными. UAG-кодон – условный терминаторный кодон и супрессируемые Amber-мутации вызывают преждевременную терминацию трансляции. В митохондриальной ДНК, UAG-кодон вызывает безусловное прекращение трансляции.
  • PYLIS (pyrrolysine insertion sequence, последовательность вставки пирролизина) downstream sequence, – шпилькообразная структура, появляющаяся в некоторых последовательностях мРНК. Как считалось ранее, данный структурный мотив вызывает стоп-кодон UAG для трансляции в аминокислоту пирролизин, вместо окончания трансляции белка. Однако в 2007 году было установлено, что PYLIS последовательность на UAG стоп-кодон не оказывает никакого влияния.
  • SECIS-элемент, selenocysteine insertion sequence, последовательность вставки селеноцистеина – участок РНК длиной ~60 нуклеотидов, формирующий шпилькообразную структуру. Данный структурный мотив заставляет стоп-кодон UGA кодировать селеноцистеин.
  • Парентеральное питание, внутривенное питание – способ введения питательных веществ в организм человека методом внутривенной инфузии (в обход желудочно-кишечного тракта). В частности, для парентерального питания применятся фибриносол (гидролизат фибрина крови, содержащий свободные аминокислоты и отдельные пептиды), аминотроф (гидролизат казеина, содержащий, в частности, L-триптофан), гидролизин (гидролизат белков крови телят), ваминолакт (смесь 18 аминокислот, соответствующих составу грудного молока), полиамин (сбалансированная смесь, состоящая из 13 L-аминокислот (из них 8 незаменимых) и D-сорбита).
  • Липотропный фактор содержит три вещества, стимулирующие метаболизм жиров, способствующие предотвращению накоплению и удалению жиров из печени – метионин (серосодержащая аминокислота), холин (витамин B4) и инозитол (витамин B8). Метионин, отдельно, способствует удалению токсинов, образующихся во время утилизации жиров.
  • Поликонденсация – процесс синтеза полимеров из полифункциональных соединений, сопровождающийся, обычно, выделением низкомолекулярных побочных продуктов при взаимодействии функциональных групп. В промышленности поликонденсацией получают линейные (полисилоксаны, полиэфиры, поликарбонаты, полиуретаны и полиамиды) и сетчатые (фенол-альдегидные, мочевино-альдегидные, меламин-альдегидные и алкидные смолы) полимеры. В живых организмах поликонденсацией (с участием комплексов ферментов) синтезируются практически все биополимеры (в том числе белки, РНК, ДНК).
  • Сульфоновые кислоты, сульфокислоты – органические соединения общей формулы R-SO 2 OH либо RSO 3 H, где R – органический радикал. Сульфоновые кислоты рассматриваются как органические соединения, замещенные по углероду сульфогруппой –SO 3 H, обладающими всеми свойствами, присущими кислотам. Природными сульфокислотами являются и таурин и цистеиновая кислота (промежуточный продукт окисления цистеина в процессе образования таурина).
  • Синаптическая передача, нейротрансмиссия, нейропередача – электрические движения в синапсах (местах контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой), вызванные распространением нервных импульсов.

При написании статьи об аминокислотах в качестве источников использовались материалы информационных и справочных интернет-порталов, сайтов новостей NCBI.NLM.NIH.gov, Biology.Arizona.edu, Britannica.com, ProteinStructures.com, NYU.edu, FAO.org, Organic-Chemistry.org, Biology.UCSD.edu, Chemistry.Stanford.edu, News.Stanford.edu, MedicineNet.com, MicroBiologyOnline.org.uk, ScienceDirect.com, Nature.com, Journals.Elsevier.com, ScienceDaily.com, VolgMed.ru, MRSU.ru, SGU.ru, ULSU.ru, KurskMed.com, Википедия, а также следующие печатные издания:

  • Emil Fischer «Untersuchungen ü,ber Aminosä,uren, Polypeptide und Proteine II (1907–1919)». Издательство «Springer-Verlag Berlin Heidelberg GmBH», 1923 год, Гейдельберг, Германия,
  • Туракулов Я. Х. (редактор) «Тиреоидные гормоны. Биосинтез, физиологические эффекты и механизм действия». Издательство «ФАН», 1972 год, Ташкент,
  • Петровский Б. В. (редактор) «Большая медицинская энциклопедия». Издательство «Советская энциклопедия», 1974 год, Москва,
  • Садовникова М. С., Беликов В. М. «Пути применения аминокислот в промышленности». Журнал «Успехи химии», №47, 1978 год, Москва,
  • Ешкайт Х., Якубке Х.-Д. «Аминокислоты. Пептиды. Белки». Издательство «Мир», 1985 год, Москва,
  • Кочетков Н. А., Членов М. А. (редакторы) «Общая органическая химия. Том 10». Издательство «Химия», 1986 год, Москва,
  • Айала Ф., Кайгер Дж. «Современная генетика». Издательство «Мир», 1987 год, Москва,
  • Овчинников Ю. А. «Биоорганическая химия». Издательство «Просвещение», 1987 год, Москва,
  • Березов Т. Т., Коровкин Б. Ф. «Биологическая химия». Издательство «Медицина», 1998 год, Москва,
  • Энтелис Н. С. «Аминоацил-тРНК-синтетазы: два класса ферментов». Соросовский образовательный журнал, № 9, 1998 год, Москва,
  • Филиппович Ю. Б. «Основы биохимии». Издательство «Агар», 1999 год, Москва,
  • Шамин А. Н. «История химии белка». Издательство «КомКнига», 2006 год, Москва,
  • Опейда Й., Швайка О. «Глоссарий терминов по химии». Издательство «Вебер» (донецкое отделение), 2008 год, Донецк,
  • Болотин С. Н., Буков Н. Н., Волынкин В. А., Панюшкин В. Т. «Координационная химия природных аминокислот». Издательство «URSS», 2008 год, Москва,
  • Lee Russell McDowell «Vitamins in animal and human nutrition». Издательство «John Wiley & Sons», 2008 год, Нью-Йорк, США,
  • Коничев А. С., Севастьянова Г. А. «Молекулярная биология. Высшее профессиональное образование». Издательство «Академия», 2008 год, Москва,
  • 3. Роль активного центра в ферментативном катализе
  • 1. Кислотно-основной катализ
  • 2. Ковалентный катализ
  • 15. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 16. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
  • 1. Роль металлов в присоединении субстрата в активном центре фермента
  • 2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
  • 3. Роль металлов в ферментативном катализе
  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 17. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 19. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования (на примере ферментов синтеза и распада гликогена).
  • 20. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 21. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 22. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 23. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 24. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 27. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.(пцр)
  • 29. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 30. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 31. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 32. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 33. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 35. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 39. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 41. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 42. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 45. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 50. Образование активных форм кислорода (синглетный кислород, пероксид водорода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 51. . Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 53.Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 54. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 55. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 57. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 58. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 59. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 61. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 62. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 64. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 66. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 67. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 69. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 74. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • 76. Оринитиновый цикл мочевинообразования. Химизм, место протекания процесса. Энергетический эффект процесса, его регуляция. Количественное определение мочевины сыворотки крови, клиническое значение.
  • 2. Образование спермидина и спермина, их биологическая роль
  • 78. Обмен фенилаланина и тирозина. Особенности обмена тирозина в разных тканях.
  • 79. Эндокринная, паракринная и аутокринная системы межклеточной коммуникации. Роль гормонов в системе регуляции метаболизма. Регуляция синтеза гормонов по принципу обратной связи.
  • 80. Классификация гормонов по химическому строению и биологическим функция.
  • 1. Классификация гормонов по химическому строению
  • 2. Классификация гормонов по биологическим функциям
  • 1. Общая характеристика рецепторов
  • 2. Регуляция количества и активности рецепторов
  • 82. Циклические амф и гмф как вторичные посредники. Активация протеинкиназ и фосфорилирование белков, ответственных за проявление гормонального эффекта.
  • 3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
  • 85. Гормоны гипоталамуса и передней доли гипофиза, химическая природа и биологическая роль.
  • 2. Кортиколиберин
  • 3. Гонадолиберин
  • 4. Соматолиберин
  • 5.Соматостатин
  • 1. Гормон роста, пролактин
  • 2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
  • 3. Группа гормонов, образующихся из проопиомеланокортина
  • 4. Гормоны задней доли гипофиза
  • 86. Регуляция водно-солевого обмена. Строение, механизмдействия и функции альдостерона и вазопрессина. Роль системы ренин-ангиотензин-альдостерон. Предсердный натриуретический фактор.
  • 1. Синтез и секреция антидиуретического гормона
  • 2. Механизм действия
  • 3. Несахарный диабет
  • 1. Механизм действия альдостерона
  • 2. Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена
  • 3. Восстановление объёма крови при обезвоживании организма
  • 4. Гиперальдостеронтм
  • 87. Регуляция обмена ионов кальция и фосфатов. Строение, биосинтез и механизм действия паратгормона, кальцитонина и кальцитриола.Причины и проявления рахита, гипо- и гиперпаратиреоидизма.
  • 1. Синтез и секреция птг
  • 2. Роль паратгормона в регуляции обмена кальция и фосфатов
  • 3. Гиперпаратиреоз
  • 4. Гипопаратиреоз
  • 1. Строение и синтез кальцитриола
  • 2. Механизм действия кальцитриола
  • 3. Рахит
  • 2. Биологические функции инсулина
  • 3. Механизм действия инсулина
  • 1. Инсулинзависимый сахарный диабет
  • 2. Инсулинонезависимый сахарный диабет
  • 1. Симптомы сахарного диабета
  • 2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
  • 3. Поздние осложнения сахарного диабета
  • 1. Биосинтез йодтиронинов
  • 2. Регуляция синтеза и секреции йодтиронинов
  • 3. Механизм действия и биологические функции йодтиронинов
  • 4. Заболевания щитовидной железы
  • 90. Гормоны коры надпочечников (кортикостероиды). Их влияние на метаболизм клетки. Изменения метаболизма при гипо- и гиперфункции коры надпочечников.
  • 3. Изменения метаболизма при гипо- и гиперфункции коры надпочечников
  • 91. Гормоны мозгового слоя надпочечников. Секреция катехоламинов. Механизм действия и биологические функции катехоламинов. Патология мозгового вещества надпочечников.
  • 1. Синтез и секреция катехоламинов
  • 2. Механизм действия и биологические функции катехоламинов
  • 3. Патология мозгового вещества надпочечников
  • 1. Основные ферменты микросомальных электронтранспортных цепей
  • 2. Функционирование цитохрома р450
  • 3. Свойства системы микросомального окисления
  • 93.Распад гема. Схема процесса, место протекания. «Прямой» и «непрямой» билирубин, его обезвреживание в печени.Диагностическое значение определения билирубина в крови и моче.
  • 94. . Нарушения катаболизма гема. Желтухи: гемолитическая, желтуха новорожденных, печеночно-клеточная, механическая, наследственная (нарушения синтеза удф-глюкуронилтрансферазы).
  • 1. Гемолитическая (надпечёночная) желтуха
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 3. Механическая, или обтурационная (подпечёночная) желтуха
  • 1. Участие трансфераз в реакциях конъюгации
  • 2. Роль эпоксидгидролаз в образовании диолов
  • 96. Гемоглобины человека, структура. Транспорт кислорода и диоксида углерода. Гемоглобин плода и его физиологическое значение. Гемоглобинопатии.
  • 98. Белки сыворотки крови, биологическая роль основных фракций белков, значение их определения для диагностики заболеваний. Содержание и функции некоторых белков плазмы крови
  • 98. Ферменты плазмы крови, энзимодиагностика. Количественное определение активности аминотрансфераз (АлАт, АсАт).
  • Аминотрансферазы
  • Аланинаминотрансфераза (алат)
  • 99. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры. Особенности биосинтеза и созревания коллагена. Роль аскорбиновой кислоты в созревании коллагена.
  • 104. Значение воды для жизнедеятельности организма. Распределение воды в тканях, понятие о внутриклеточной и внеклеточной жидкостях. Водный баланс, регуляция водного обмена.
  • 1.Предмет и задачи биологической химии. Биохимия как молекулярный уровень изучения структурной организации, анаболизма и катаболизма живой материи. Место биохимии среди других биологических дисциплин. Значение биохимии в подготовке врача и для медицины.

    Биохимия – это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах, а также связи этих превращений с деятельностью органов и тканей. Таким образом, биохимия состоит как бы из трех частей: 1) статическая биохимия (это анализ химического состава живых организмов); 2) динамическая биохимия (изучает совокупность превращения веществ и энергии в организме); 3) функциональная биохимия (исследует процессы, лежащие в основе различных проявлений жизнедеятельности).

    Главным для биохимии является выяснение функционального, то есть биологического назначения всех химических веществ и физико-химических процессов в живом организме, а также механизм нарушения этих функций при разных заболеваниях. Современная биохимия решает следующие задачи : 1. Биотехнологическую, т.е. создание фармацевтических препаратов (гормонов, ферментов), регуляторов роста растений, средств борьбы с вредителями, пищевых добавок. 2. Проводит разработку новых методов и средств диагностики и лечения наследственных заболеваний, канцерогенеза, природы онкогенов и онкобелков. 3. Проводит разработку методов генной и клеточной инженерии для получения принципиально новых пород животных и форм растений с более ценными признаками. 4. Изучает молекулярные основы памяти, психики, биоэнергетики, питания и целый ряд других задач.

    Биологическая химия изучает молекулярные процессы, лежащие в основе разви­тия и функционирования организмов. Биохимия использует методы «молекуляр­ных» наук - химии, физической химии, молекулярной физики, и в этом отноше­нии биохимия сама является молекулярной наукой. Однако главные конечные задачи биохимии лежат в области биологии: она изучает закономерности биоло­гической, а не химической формы движения материи. С другой стороны, «молекулярные изобретения» природы, открываемые биохимиками, находят приме­нение в небиологических отраслях знания и в промышленности (молекулярная бионика, биотехнология). В таких случаях биохимия выступает в роли метода, а предметом исследований и разработок являются проблемы, выходящие за пре­делы биологии.

    Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ включает 3 этапа: поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.

    Поступление веществ в организм происходит в результате дыхания (кислород) и питания. В ЖКТ продукты питания перевариваются (расщепляются до простых веществ). При переваривании происходит гидролиз полимеров (белков, полисахаридов и других сложных органических веществ) до мономеров, всасывающихся в кровь и включающихся в промежуточный обмен.

    Промежуточный обмен (внутриклеточный метаболизм) включает 2 типа реакций: катаболизм и анаболизм.

    Катаболизм - процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО 2 , Н 2 О и мочевина. В процессы катаболизма включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

    Реакции катаболизма сопровождаются выделением энергии (экзергонические реакции).

    Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме (эндергонические реакции).

    Практически любое заболевание начинается с по­вреждения (нарушения) одной реакции в метабо­лизме клетки, а затем оно распространяется на ткань, орган и целый организм. Нарушение метабо­лизма ведет к нарушению гомеостаза в биологичес­ких жидкостях организма человека, что сопровож­дается изменением биохимических показателей.

    Большое значение клинико-биохимических методов исследования био­логических жидкостей велико в медицине и важно для подготовки медицинских лаборатор­ных техников. Достаточно напомнить, что только в крови человека можно определить современными методами биохимических исследований около 1000 показателей метаболизма.

    Биохимические показа­тели биологических сред организма человека широко используются при:

    1. постановке диагноза заболевания, особенно дифференциального диагноза;

    2. выборе метода лечения;

    3.контроле за правильностью назначенного ле­чения;

    4.результаты биохимических анализов служат одним из критериев излеченности патологическо­го процесса;

    5.скрининге (выявлении болезни на доклини­ческой стадии);

    6.мониторинге (контроле за течением заболе­вания и результатом лечения);

    7. прогнозе (информации о возможном исходе заболевания).

    2. Аминокислоты, входящие в состав белков, их строение и свойства. Пептиды.

    Биологическая роль аминокислот и пептидов.

    1. Общие структурные особенности аминокислот, входящих в состав белков

    Общая структурная особенность аминокислот - наличие амино- и карбоксильной групп, соединённых с одним и тем же?-углеродным атомом. R - радикал аминокислот - в простейшем случае представлен атомом водорода (глицин), но может иметь и более сложное строение. В водных растворах при нейтральном значении рН?- аминокислоты существуют в виде биполярных ионов. В отличие от 19 остальных?-аминокислот, пролин - иминокислота, радикал которой связан как с?-углеродным атомом, так и с аминогруппой, в результате чего молекула приобретает циклическую структуру.

    19 из 20 аминокислот содержат в?-положении асимметричный атом углерода, с которым связаны 4 разные замещающие группы. В результате эти аминокислоты в природе могут находиться в двух разных изомерных формах - L и D. Исключение составляет глицин, который не имеет асимметричного?-углеродного атома, так как его радикал представлен только атомом водорода. В составе белков присутствуют только L-изомеры аминокислот.

    Чистые L- или D-стереоизомеры могут за длительный срок самопроизвольно и неферментативно превращаться в эквимолярную смесь L- и D-изомеров. Этот процесс называют рацемизацией. Рацемизация каждой L-аминокислоты при данной температуре идёт с определённой скоростью. Все 20 аминокислот в организме человека различаются по строению, размерам и физико-химическим свойствам радикалов, присоединённых к?-углеродному атому.

    2. Классификация аминокислот по химическому строению радикалов

    По химическому строению аминокислоты можно разделить на алифатические, ароматические и гетероциклические

    В составе алифатических радикалов могут находиться функциональные группы, придающие им специфические свойства: карбоксильная (-СООН), амино (-NH 2), тиольная (-SH), амидная (-CO-NH 2), гидроксильная (-ОН) и гуанидиновая группы.

    Для записи аминокислотных остатков в молекулах пептидов и белков используют трёхбуквенные сокращения их тривиальных названий, а в некоторых случаях и однобуквенные символы

    3. Классификация аминокислот по растворимости их радикалов в воде

    Все 20 аминокислот в белках организма человека можно сгруппировать по способности их радикалов растворяться в воде. Радикалы можно выстроить в непрерывный ряд, начинающийся полностью гидрофобными и заканчивающийся сильно гидрофильными.

    Растворимость радикалов аминокислот определяется полярностью функциональных групп, входящих в состав молекулы (полярные группы притягивают воду, неполярные её отталкивают).

    Аминокислоты с неполярными радикалами

    К неполярным (гидрофобным) относят радикалы, имеющие алифатические углеводородные цепи (радикалы аланина, валина, лейцина, изолейцина, пролина и метионина) и ароматические кольца (радикалы фенилаланина и триптофана). Радикалы таких аминокислот в воде стремятся друг к другу или к другим гидрофобным молекулам, в результате чего поверхность соприкосновения их с водой уменьшается.

    Аминокислоты с полярными незаряженными радикалами

    Радикалы этих аминокислот лучше, чем гидрофобные радикалы, растворяются в воде, так как в их состав входят полярные функциональные группы, образующие водородные связи с водой. К ним относят серии, треонин и тирозин, имеющие гидроксильные группы, аспарагин и глутамин, содержащие амидные группы, и цистеин с его тиольной группой.

    Аминокислоты с полярными отрицательно заряженными радикалами

    К этой группе относят аспарагиновую и глутаминовую аминокислоты, имеющие в радикале дополнительную карбоксильную группу, при рН около 7,0 диссоциирующую с образованием СОО - и Н + . Следовательно, радикалы данных аминокислот - анионы. Ионизированные формы глутаминовой и аспарагиновой кислот называют соответственно глутаматом и аспартатом.

    Аминокислоты с полярными положительно заряженными радикалами

    Дополнительную положительно заряженную группу в радикале имеют лизин и аргинин. У лизина вторая аминогруппа, способная присоединять Н + , располагается в?-положении алифатической цепи, а у аргинина положительный заряд приобретает, гуанидиновая группа, Кроме того, гистидин содержит слабо ионизированную имидазольную группу, поэтому при физиологических колебаниях значений рН (от 6,9 до 7,4) гистидин заряжен либо нейтрально, либо положительно. При увеличении количества протонов в среде имидазольная группа гистидина способна присоединять протон, приобретая положительный заряд, а при увеличении концентрации гидроксильных групп - отдавать протон, теряя положительный заряд радикала. Положительно заряженные радикалы - катионы.Наибольшей растворимостью в воде обладают полярные заряженные радикалы аминокислот.

    4. Изменение суммарного заряда аминокислот в зависимости от рН среды

    При нейтральных значениях рН все кислотные (способные отдавать Н +) и все основные (способные присоединять Н +) функциональные группы находятся в диссоциированном состоянии.

    Поэтому в нейтральной среде аминокислоты, содержащие недиссоциирующий радикал, имеют суммарный нулевой заряд. Аминокислоты, содержащие кислотные функциональные группы, имеют суммарный отрицательный заряд, а аминокислоты, содержащие основные функциональные группы, - положительный заряд

    Изменение рН в кислую сторону (т.е. повышение в среде концентрации Н +) приводит к подавлению диссоциации кислотных групп. В сильно кислой среде все аминокислоты приобретают положительный заряд.

    Напротив, увеличение концентрации ОН - групп вызывает отщепление Н + от основных функциональных групп, что приводит к уменьшению положительного заряда. В сильно щелочной среде все аминокислоты имеют суммарный отрицательный заряд.

    5. Модифицированные аминокислоты, присутствующие в белках

    Непосредственно в синтезе белков организма человека принимают участие только 20 перечисленных аминокислот. Однако в некоторых белках имеются нестандартные модифицированные аминокислоты - производные одной из этих 20 аминокислот.

    Модификации аминокислотных остатков осуществляются уже в составе белков, т.е. только после окончания их синтеза. Введение дополнительных функциональных групп в структуру аминокислот придаёт белкам свойства, необходимые для выполнения ими специфических функций.

    6. Химические реакции, используемые для обнаружения аминокислот

    Для обнаружения и количественного определения аминокислот, находящихся в растворе, можно использовать нингидриновую реакцию.

    Эта реакция основана на том, что бесцветный нингидрин, реагируя с аминокислотой, конденсируется в виде димера через атом азота, отщепляемый от?-аминогруппы аминокислоты. В результате образуется пигмент красно-фиолетового цвета. Одновременно происходит декарбоксилирование аминокислоты, что приводит к образованию СО 2 и соответствующего альдегида. Нингидриновую реакцию широко используют при изучении первичной структуры белков Так как интенсивность окраски пропорциональна количеству аминокислот в растворе, её используют для измерения концентрации?-аминокислот.

    Специфические реакции на отдельные аминокислоты

    Качественное и количественное определение отдельных аминокислот возможно благодаря наличию в их радикалах особенных функциональных групп.

    Аргинин определяют с помощью качественной реакции на гуанидиновую группу (реакция Сакагучи), а цистеин выявляют реакцией Фоля, специфичной на SH-группу данной аминокислоты. Наличие ароматических аминокислот в растворе определяют ксантопротеиновой реакцией (реакция нитрования), а наличие гидроксильной группы в ароматическом кольце тирозина - с помощью реакции Миллона.

    Б. Пептидная связь. Строение и биологические свойства пептидов

    3.Биологическая роль пептидов

    В организме человека вырабатывается множество пептидов, участвующих в регуляции различных биологических процессов и обладающих высокой физиологической активностью.

    Функции пептидов зависят от их первичной структуры. Ангиотензин I по структуре очень похож на ангиотензин II (имеет только две дополнительные аминокислоты с С-конца), но при этом не обладает биологической активностью.

    Изменение в аминокислотном составе пептидов часто приводит к потере одних и возникновению других биологических свойств.

    Так как пептиды - мощные регуляторы биологических процессов, их можно использовать как лекарственные препараты. Основное препятствие для терапевтического использования - их быстрое разрушение в организме. Одним из важнейших результатов исследований является не только изучение структуры пептидов, но и получение синтетических аналогов природных пептидов с целенаправленными изменениями в их структуре и функциях.

    Открытые и изученные в настоящее время пептиды можно разделить на группы по их основному физиологическому действию:

      пептиды, обладающие гормональной активностью (окситоцин, вазопрессин, рилизинг-гормоны гипоталамуса, меланоцитстимулирующий гормон, глюкагон и др.);

      пептиды, регулирующие процессы пищеварения (гастрин, холецистокинин, вазоинтестиналшый пептид, желудочный ингибирующий пептид и др.);

      пептиды, регулирующие тонус сосудов и АД (брадикинин, калидин, ангиотензин II);

      пептиды, регулирующие аппетит (лептин, нейропептид Y, меланоцитстимулирующий гормон, (?-эндорфины);

      пептиды, обладающие обезболивающим действием (энкефалины и эндорфины и другие опиоидные пептиды). Обезболивающий эффект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;

      пептиды, участвующие в регуляции высшей нервной деятельности, в биохимических процессах, связанных с механизмами сна, обучения, памяти, возникновения чувства страха и т.д.

    3. Первичная структура белков. Пептидная связь, ее характеристика (прочность, кратность, компланарность, цис- ,транс- изомерия). Значение первичной структуры для нормального функционирования белков (на примере гемоглобина S ).

    Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты

    Если в образовании пептидной связи участвует иминогруппа пролина или гидроксипролина, то она имеет другой вид.

    При образовании пептидных связей в клетках сначала активируется карбоксильная группа одной аминокислоты, а затем она соединяется с аминогруппой другой. Примерно так же проводят лабораторный синтез полипептидов.

    Пептидная связь является повторяющимся фрагментом полипептидной цепи. Она имеет ряд особенностей, которые влияют не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи:

      копланарность - все атомы, входящие в пептидную группу, находятся в одной плоскости;

      способность существовать в двух резонансных формах (кето- или енольной форме);

      транс-положение заместителей по отношению к С-N-связи;

      способность к образованию водородных связей, причем каждая из пептидных групп может образовывать две водородные связи с другими группами, в том числе и пептидными.

    Исключение составляют пептидные группы с участием аминогруппы пролина или гидроксипролина. Они способны образовывать только одну водородную связь. Это сказывается на формировании вторичной структуры белка. Полипептидная цепь на участке, где находится пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

    Особенности первичной структуры белка . В остове полипептидной цепи чередуются жесткие структуры (плоские пептидные группы) с относительно подвижными участками (-СНR), которые способны вращаться вокруг связей. Такие особенности строения полипептидной цепи влияют на укладку ее в пространстве.

    2.Характеристика пептидной связи

    Пептидная связь имеет характеристику частично двойной связи, поэтому она короче, чем остальные связи пептидного остова, и вследствие этого мало подвижна. Электронное строение пептидной связи определяет плоскую жёсткую структуру пептидной группы. Плоскости пептидных групп расположены под углом друг к другу.

    Связь между?-углеродным атомом и?-аминогруппой или?-карбоксильной группой способна к свободным вращениям (хотя ограничена размером и характером радикалов), что позволяет полипептидной цепи принимать различные конфигурации.

    Пептидные связи обычно расположены в транс-конфигурации, т.е. ?-углеродные атомы располагаются по разные стороны от пептидной связи. В результате боковые радикалы аминокислот находятся на наиболее удалённом расстоянии друг от друга в пространстве.

    Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках (нейтральная среда, температура тела). В лабораторных условиях гидролиз пептидных связей белков проводят в запаянной ампуле с концентрированной (6 моль/л) соляной кислотой, при температуре более 105 °С, причём полный гидролиз белка до свободных аминокислот проходит примерно за сутки.

    В живых организмах пептидные связи в белках разрываются с помощью специальных протеолитических ферментов (от англ, protein - белок, lysis - разрушение), называемых также протеазами, или пептидгидролазами.

    Для обнаружения в растворе белков и пептидов, а также для их количественного определения используют биуретовую реакцию (положительный результат для веществ, содержащих в своём составе не менее двух пептидных связей).

    Химическая природа каждого белка уникальна и тесно связана с его биологической функцией. Способность белка выполнять присущую ему функцию определяется его первичной структурой. Даже небольшие изменения в последовательности аминокислот в белке могут привести к серьезному нарушению в его функционировании, возникновению тяжелого заболевания. Болезни, связанные с нарушениями первичной структуры белка, получили название молекулярных. К настоящему времени открыто несколько тысяч таких болезней. Одной из молекулярных болезней является серповидноклеточная анемия, причина которой кроется в нарушении первичной структуры гемоглобина. У людей с врожденной аномалией структуры гемоглобина в полипептидной цепочке, состоящей из 146 аминокислотных остатков, в шестом положении находится валин, тогда как у здоровых людей на этом месте - глутаминовая кислота. Аномальный гемоглобин хуже транспортирует кислород, а эритроциты крови больных имеют серповидную форму. Заболевание проявляется в замедлении развития, общей слабости организма.

    ОПРЕДЕЛЕНИЕ

    Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильная группа –СООН и аминогруппа – NH 2 .

    В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

    CH 3 -CH(NH 2)-COOH (α-аминопропионованя кислота)

    CH 2 (NH 2)-CH 2 -COOH (β – аминопропионованя кислота)

    Наиболее важными представителями аминокислот являются: глицин (H 2 N-CH 2 -COOH), аланин (CH 3 -CH(NH 2)-COOH), фенилаланин (C 6 H 5 -CH 2 -CH(NH 2)-COOH), глутаминовая кислота (HOOC-(CH 2) 2 -CH(NH 2)-COOH), лизин (H 2 N-(CH 2) 4 -CH(NH 2)-COOH), серин (HO-CH 2 -CH(NH 2)-COOH) и цистеин (HS-CH 2 -CH(NH 2)-COOH).

    Изомерия

    Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

    Физические свойства аминокислот

    Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

    Получение

    Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

    R-CH(Cl)-COOH + NH 3 = R-CH(NH 3 + Cl —) = NH 2 –CH(R)-COOH

    Химические свойства аминокислот

    Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

    NH 2 –CH 2 -COOH + HCl = Cl

    NH 2 –CH 2 -COOH + NaOH= NH 2 –CH 2 -COONa + H 2 O

    При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

    H 2 N –CH 2 -COOH ↔ + H 3 N-CH 2 COO —

    Молекулу внутренней соли называют биполярным ионом.

    Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

    Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

    Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

    α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

    Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

    Белки

    ОПРЕДЕЛЕНИЕ

    Белки (протеины, полипептиды) - высокомолекулярные органические вещества, состоящие из альфа- аминокислот, соединённых в цепочку пептидной связью.

    В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

    Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH 2)аргинина, в несколько меньшей степени -имидазольный остаток гистидина).

    Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

    Строение аминокислот

    Аминокислоты - гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы : аминогруппу -NH 2 и карбоксиль­ную группу -СООН, связанные с углеводородным радикалом.

    Общую формулу простей­ших аминокислот можно за­писать так:

    Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

    Свойства аминокислот

    Аминогруппа -NH 2 определяет основные свой­ства аминокислот , т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

    Группа -СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений . Следо вательно, аминокислоты - это амфотерные орга­нические соединения .

    Со щелочами они реагируют как кислоты:

    С сильными кислотами как основания-амины:

    Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

    Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

    Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

    Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они рас­творимы в воде и нерастворимы в эфире. В зависи­мости от радикала R- они могут быть сладкими, горькими или безвкусными.

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие . Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

    Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки -NH-CO- , например:

    Получаемые в результате такой реакции высо­комолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов .

    К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

    Полиамиды α-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы -NH-CO- на­зывают пептидными .

    Изомерия и номенклатура аминокислот

    Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

    Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита : α, β, γ и т. д. Так, 2-аминобутановую кислоту можно на звать также α-аминокислотой:

    В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

    Белки

    Белки - это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

    Белки также называют протеинами (греч. «протос» - первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

    Белки выполняют разнообразные биологичес­кие функции : каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемо­глобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

    Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

    Белки - основа биомембран, важнейшей состав­ной части клетки и клеточных компонентов. Они играют ключевую роль в жиз­ни клетки, составляя как бы материальную основу ее химической деятельности.

    Исключительное свойство белка - самоорганизация структуры , т. е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое дру­гое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

    Белки - важнейшая составная часть пищи че­ловека и животных, поставщик необходимых ами­нокислот .

    Строение белков

    В пространственном строении белков большое значение имеет характер радикалов (остатков) R- в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макро­молекулы белка и обусловливают гидрофобные взаимодействия ; полярные радикалы , содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) вза­имодействия . Полярные неионогенные радикалы (например, содержащие спиртовые ОН-группы, амидные группы) могут располагаться как на по­верхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей .

    В молекулах белка а-аминокислоты связаны между собой пептидными (-СО-NH-) связями:

    Построенные таким образом полипептидные це­пи или отдельные участки внутри полипептидной цепи могут быть в некото­рых случаях дополнительно связаны между собой дисуль­фидными (-S-S-) связями или, как их часто называют, дисульфидными мостиками .

    Большую роль в создании структуры белков играют ион­ные (солевые) и водородные связи , а также гидрофобное взаимодействие - особый вид контактов между гидрофоб­ными компонентами молекул белков в водной среде. Все эти связи имеют различную прочность и обеспечивают образование сложной, большой молекулы белка.

    Несмотря на различие в строении и функциях белковых веществ, их элементный состав колеб­лется незначительно (в % на сухую массу): угле­рода - 51-53; кислорода - 21,5-23,5; азота - 16,8-18,4; водорода - 6,5-7,3; серы - 0,3-2,5.

    Некоторые белки содержат в небольших количе­ствах фосфор, селен и другие элементы. Последовательность соединения аминокислот­ных остатков в полипептидной цепи получила на­звание первичной структуры белка. Белковая молекула может состоять из одной или из нескольких полипептидных цепей, каждая из которых содержит различное число аминокис­лотных остатков. Учитывая число их возможных комби­наций, можно сказать, что разнообразие белков почти безгранично, но не все из них существуют в природе. Общее число различных ти­пов белков у всех видов жи­вых организмов составляет 10 11 -10 12 . Для белков, строение которых отлича­ется исключительной сложностью, кроме первич­ной, различают и более высокие уровни структур­ной организации: вторичную, третичную, а иногда и четвертичную структуры.

    Вторичной структурой обладает большая часть белков, правда, не всегда на всем протяжении полипептидной цепи. Полипептидные цепочки с определенной вторичной структурой могут быть по-разному расположены в пространстве.

    В формировании третичной структуры , кроме водородных связей, большую роль играют ион­ное и гидрофобное взаимодействия. По характеру «упаковки» белковой молекулы различают глобу­лярные, или шаровидные, и фибриллярные, или нитевидные, белки.

    Для глобулярных белков более характерна α-спиральная структура, спирали изогнуты, «свер­нуты». Макромолекула имеет сферическую форму. Они растворяются в воде и солевых растворах с об­разованием коллоидных систем. Большинство бел­ков животных, растений и микроорганизмов отно­сится к глобулярным белкам.


    - последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами - пептидная.

    Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, - 1020. Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

    Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию - транспорт кислорода; в таких случаях у человека развивается заболевание - серповидноклеточная анемия.

    Вторичная структура - упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

    Третичная структура - укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия.

    В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

    Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

    Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов - поверхностных белков нервных клеток.

    Для фибриллярных белков более характерна нитевидная структура. Они, как правило, не рас­творяются в воде. Фибриллярные белки обычно выполняют структурообразующие функции. Их свойства (прочность, способность растягиваться) за­висят от способа упаковки полипептидных цепо­чек. Примером фибриллярных белков служат мио­зин, кератин. В ряде случаев отдельные субъ­единицы белка с помощью во­дородных связей, электроста­тического и других взаимо­действий образуют сложные ансамбли. В этом случае об­разуется четвертичная струк­тура белков .

    Примером белка с четвер­тичной структурой служит гемоглобин крови. Только с такой структурой он выполняет свои функции - связывание кислорода и транспортировка его в ткани и органы. Однако следует отметить, что в организации бо­лее высоких структур белка исключительная роль принадлежит первичной структуре.

    Классификация белков

    Существует несколько классификаций белков:

    По степени сложности (простые и сложные).

    По форме молекул (глобулярные и фибрилляр­ные белки).

    По растворимости в отдельных растворителях (водорастворимые, растворимые в разбавлен­ных солевых растворах - альбумины, спирто­растворимые - проламины, растворимые в раз­бавленных щелочах и кислотах - глутелины).

    По выполняемым функциям (например, запас­ные белки, скелетные и т. п.).

    Свойства белков

    Белки - амфотерные электролиты . При опреде­ленном значении pH среды (оно называется изо­электрической точкой) число положительных и от­рицательных зарядов в молекуле белка одинаково. Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в во­де наименьшая. Способность белков снижать рас­творимость при достижении электронейтральности их молекул используется для выделения из раство­ров, например, в технологии получения белковых продуктов.

    Гидратация . Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения. Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (-СО-NH-, пеп­тидная связь), аминные (-NH 2) и карбоксильные (-СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении рН среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

    При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями . Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма - сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды.

    Различная гидрофильность клейковинных бел­ков - один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

    Денатурация белков . При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры. Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование. В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

    В пищевой технологии особое практическое значение имеет тепловая денатурация белков , степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хле­ба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

    Пенообразование . Под процессом пенообразова­ния понимают способность белков образовывать высококонцентрированные системы «жидкость - газ», называемые пенами. Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

    Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

    1) гидролиз белков под действием ферментов;

    2) взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

    Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

    Гидролиз белков . Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

    Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

    Цветные реакции . Для качественного определе­ния белка используют следующие реакции:

    1. Денатурация – процесс нарушения естественной структуры белка (разрушение вторичной, третичной, четвертичной структуры).

    2. Гидролиз — разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот.

    3. Качественные реакции белков:

    · биуретовая;

    Биуретовая реакция – фиолетовое окрашивание при действии солей меди (II) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь, при которой происходит взаимо­действие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами Cu 2+ и полипептидами. Реакция сопровождается по­явлением фиолетово-синей окраски.

    · ксантопротеиновая;

    Ксантопротеиновая реакция – появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), при которой происходит взаимодействие ароматических и гетероатом­ных циклов в молекуле белка с концентриро­ванной азотной кислотой, сопровождающееся появлением желтой окраски.

    · реакция определения серы в белках.

    Цистеиновая реакция (для белков, содержащих серу) — кипячение раствора белка с ацетатом свинца(II) с появлением черного окрашивания.

    Справочный материал для прохождения тестирования:

    Таблица Менделеева

    Таблица растворимости