Что такое "фаза" и "ноль" в электричестве? Что такое фаза, ноль и земля в электропроводке квартиры? Защитный ноль обозначение.

Которое называется электрическим током, обеспечивает комфортное существование современному человеку. Без него не работают производственные и строительные мощности, медицинские приборы в больницах, нет уюта в жилище, простаивает городской и междугородный транспорт. Но электричество является слугой человека только в случае полнейшего контроля, если же заряженные электроны смогут найти другой путь, то последствия окажутся плачевными. Для предупреждения непредсказуемых ситуаций применяют специальные меры, главное - понять, в чем разница. Заземление и зануление защищают человека от удара током.

Направленное движение электронов осуществляется по пути наименьшего сопротивления. Чтобы избежать прохождения тока через человеческое тело, ему предлагается другое направление с наименьшими потерями, которое обеспечивает заземление или зануление. В чем разница между ними, предстоит разобраться.

Заземление

Заземление представляет собой один проводник или составленную из них группу, находящуюся в соприкосновении с землей. С его помощью выполняется сброс поступающего на металлический корпус агрегатов напряжения по пути нулевого сопротивления, т.е. к земле.

Такое электрическое заземление и зануление электрооборудования в промышленности актуально и для бытовых приборов со стальными наружными частями. Прикосновение человека к корпусу холодильника или стиральной машины, оказавшегося под напряжением, не вызовет поражения электрическим током. С этой целью используются специальные розетки с заземляющим контактом.

Принцип работы УЗО

Для безопасной работы промышленного и бытового оборудования применяют , используют приборы автоматических дифференциальных выключателей. Их работа основана на сравнении входящего по фазному проводу электрического тока и выходящего из квартиры по нулевому проводнику.

Нормальный режим работы электрической цепи показывает одинаковые значения тока в названых участках, потоки направлены в противоположных направлениях. Для того чтобы они и далее уравновешивали свои действия, обеспечивали сбалансированную работу приборов, выполняют устройство и монтаж заземления и зануления.

Пробой в любом участке изоляции приводит к протеканию тока, направляющегося к земле, через поврежденное место с обходом рабочего нулевого проводника. В УЗО показывается дисбаланс силы тока, прибор автоматически выключает контакты и напряжение исчезает во всей рабочей схеме.

Для каждого отдельного эксплуатационного условия предусмотрены различные установки для отключения УЗО, обычно диапазон наладки составляет от 10 до 300 миллиампер. Устройство срабатывает быстро, время отключения составляет секунды.

Работа заземляющего устройства

Чтобы присоединить к корпусу бытового или промышленного оборудования применяется РЕ-проводник, который из щитка выводится по отдельной линии со специальным выходом. Конструкция обеспечивает соединение корпуса с землей, в чем и заключается назначение заземления. Отличие заземления от зануления состоит в том, что в начальный момент при подсоединении вилки к розетке рабочий ноль и фаза не коммутированы в оборудовании. Взаимодействие исчезает в последнюю минуту, когда размыкается контакт. Таким образом, заземление корпуса имеет надежное и постоянное действие.

Два пути устройства заземления

Системы защиты и отвода напряжения подразделяют на:

  • искусственные:
  • естественные.

Искусственные заземления предназначены непосредственно для защиты оборудования и человека. Для их устройства требуются горизонтальные и вертикальные стальные металлические продольные элементы (часто применяют трубы с диаметром до 5 см или уголки № 40 или № 60 длиной от 2,5 до 5 м). Тем самым отличается зануление и заземление. Разница состоит в том, что для выполнения качественного зануления требуется специалист.

Естественные заземлители используются в случае их ближайшего расположения рядом с объектом или жилым домом. В качестве защиты служат находящиеся в грунте трубопроводы, выполненные из металла. Нельзя использовать для защитной цели магистрали с горючими газами, жидкостями и тех трубопроводов, наружные стенки которых обработаны антикоррозионным покрытием.

Естественные объекты служат не только защите электроприборов, но и выполняют свое основное предназначение. К недостаткам такого подключения относится доступ к трубопроводам достаточного широкого круга лиц из соседних служб и ведомств, что создает опасность нарушения целостности соединения.

Зануление

Помимо заземления, в некоторых случаях используют зануление, нужно различать, в чем разница. Заземление и зануление отводят напряжение, только делают это разными способами. Второй метод является электрическим соединением корпуса, в нормальном состоянии не под напряжением, и выводом однофазного источника электричества, нулевым проводом генератора или трансформатора, источником постоянного тока в его средней точке. При занулении напряжение с корпуса сбрасывается на специальный распределительный щиток или трансформаторную будку.

Зануление используется в случаях непредвиденных скачков напряжения или пробоя изоляции корпуса промышленных или бытовых приборов. Происходит короткое замыкание, ведущее к перегоранию предохранителей и мгновенному автоматическому выключению, в этом заключается разница между заземлением и занулением.

Принцип зануления

Переменные трехфазные цепи используют нулевой проводник для различных целей. Для обеспечения электрической безопасности с его помощью получают эффект короткого замыкания и возникшего на корпусе напряжения с фазным потенциалом в критических ситуациях. При этом появляется ток, превышающий номинальный показатель автоматического выключателя и контакт прекращается.

Устройство зануления

Чем отличается заземление от зануления, видно и на примере подключения. Корпус отдельным проводом соединяется с нулем на Для этого в розетке соединяют третью жилу электрического кабеля с предусмотренной для этого клеммой в розетке. У этого метода есть недостаток, который заключается в том, что для автоматического отключения нужен ток, по размеру больший, чем заданные установки. Если в нормальном режиме отключающее устройство обеспечивает работу прибора с силой тока в 16 Ампер, то малые пробои тока продолжают утекать без отключения.

После этого становится понятно, какая разница между заземлением и занулением. Человеческое тело при воздействии силы тока в 50 миллиампер может не выдержать и наступит остановка сердца. Зануление от таких показателей тока может не защитить, так как его функция заключается в создании нагрузок, достаточных для отключения контактов.

Заземление и зануление, в чем разница?

Между этими двумя способами существуют отличия:

  • при заземлении избыточный ток и возникшее на корпусе напряжение отводятся непосредственно в землю, а при занулении сбрасываются на ноль в щитке;
  • заземление является более эффективным способам в вопросе защиты человека от поражения электрическим током;
  • при использовании заземления безопасность получается за счет резкого уменьшения напряжения, а применение зануления обеспечивает выключение участка линии, в которой случился пробой на корпус;
  • при выполнении зануления, чтобы правильно определить нулевые точки и выбрать метод защиты потребуется помощь специалиста электрика, а сделать заземление, собрать контур и углубить его в землю может любой домашний мастер-умелец.

Заземление является системой отвода напряжения через находящийся в земле треугольник из металлического профиля, сваренного в местах соединения. Правильно устроенный контур дает надежную защиту, но при этом должны соблюдаться все правила. В зависимости от требующегося эффекта выбирается заземление и зануление электроустановок. Отличие зануления в том, что все элементы прибора, которые в нормальном режиме не находятся под током, подсоединяются к нулевому проводу. Случайное касание фазы к зануленным деталям прибора приводит к резкому скачку тока и отключению оборудования.

Сопротивление нейтрального нулевого провода в любом случае меньше этого же показателя контура в земле, поэтому при занулении возникает короткое замыкание, которое в принципе невозможно при использовании земляного треугольника. После сравнения работы двух систем становится понятно, в чем разница. Заземление и зануление отличаются по способу защиты, так как велика вероятность отгорания со временем нейтрального провода, за чем нужно постоянно следить. Зануление применяется очень часто в многоэтажных домах, так как не всегда есть возможность устроить надежное и полноценное заземление.

Заземление не зависит от фазности приборов, тогда как для устройства зануления необходимы определенные условия подключения. В большинстве случаев первый способ превалирует на предприятиях, где по требованиям техники безопасности предусматривается повышенная безопасность. Но и в быту в последнее время часто устраивается контур для сброса возникающего излишнего напряжения непосредственно в землю, это является более безопасным методом.

Защита при заземлении касается непосредственно электрической цепи, после пробоя изоляции за счет перетекания тока в землю значительно снижается напряжение, но сеть продолжает действовать. При занулении полностью отключается участок линии.

Заземление в большинстве случаев используют в линиях с устроенной изолированной нейтралью в системах IT и ТТ в трехфазных сетях с напряжением до 1 тыс. вольт или свыше этого показателя для систем с нейтралью в любом режиме. Применение зануления рекомендовано для линий с заземленным глухо нейтральным проводом в сетях TN-C-S, TN-C, TN-S с имеющимися в наличии N, PE, PEN проводниками, это показывает в чем разница. Заземление и зануление, несмотря на отличия, являются системами защиты человека и приборов.

Полезные термины электротехники

Для понимания некоторых принципов, по которым выполняются защитные зануление, заземление и отключение следует знать определения:

Глухозаземленная нейтраль представляет собой нулевой провод от генератора или трансформатора, непосредственно подключенный к заземляющему контуру.

Ею может служить вывод от источника переменного тока в однофазной сети или полюсная точка источника постоянного тока в двухфазных магистралях, как и средний выход в трехфазных сетях постоянного напряжения.

Изолированная нейтраль представляет собой нулевой провод генератора или трансформатора, не соединенный с заземляющим контуром или контактирующий с ним через сильное поле сопротивления от сигнализационных устройств, защитных приборов, измерительных реле и других приспособлений.

Принятые обозначения в сети

Все электрические установки с присутствующими в них проводниками заземления и нулевыми проводами в обязательном порядке подлежат маркировке. Обозначения наносятся на шины в виде буквенного обозначения РЕ с переменно чередующимися поперечными или продольными одинаковыми полосками зеленого или желтого цвета. Нейтральные нулевые проводники маркируются голубой литерой N, так обозначается заземление и зануление. Описание для защитного и рабочего нуля заключается в проставлении буквенного обозначения PEN и окрашивании в голубой тон по всей протяженности с зелено-желтыми наконечниками.

Буквенные обозначения

Первые литеры в пояснении к системе обозначают выбранный характер заземляющего устройства:

  • Т - соединение источника питания непосредственно с землей;
  • I - все токоведущие детали изолированы от земли.

Вторая буква служит для описания токопроводящих частей относительно подсоединения к земле:

  • Т говорит об обязательном заземлении всех открытых деталей под напряжением, независимо от вида связи с грунтом;
  • N - обозначает, что защита открытых частей под током осуществляется через глухозаземленную нейтраль от источника питания непосредственно.

Буквы, стоящие через тире от N, сообщают о характере этой связи, определяют метод обустройства нулевого защитного и рабочего проводников:

  • S - защита РЕ нулевого и N-рабочего проводников выполнена раздельными проводами;
  • С - для защитного и рабочего нуля применяется один провод.

Виды защитных систем

Классификация систем является основной характеристикой, по которой устраивается защитное заземление и зануление. Общие технические сведения описаны в третьей части ГОСТ Р 50571.2-94. В соответствии с ней заземление выполняется по схемам IT, TN-C-S, TN-C, TN-S.

Система TN-C разработана в Германии в начале 20 века. В ней предусмотрено объединение в одном кабеле рабочего нулевого провода и РЕ-проводника. Недостатком является то, что при отгорании нуля или возникшем другом нарушении соединения на корпусах оборудования появляется напряжение. Несмотря на это система применяется в некоторых электрических установках до нашего времени.

Системы TN-C-S и TN-S разработаны взамен неудачной схемы заземления TN-C. Во второй схеме защиты два вида нулевых провода разделялись прямо от щитка, а контур являлся сложной металлической конструкцией. Эта схема получилась удачной, так как при отсоединении нулевого провода на кожухе электроустановки не появлялось линейное напряжение.

Система TN-C-S отличается тем, что разделение нулевых проводов выполняется не сразу от трансформатора, а примерно на середине магистрали. Это не было удачным решением, так как если обрыв нуля случится до точки разделения, то электрический ток на корпусе будет представлять угрозу для жизни.

Схема подсоединения по системе ТТ обеспечивает непосредственную связь деталей под напряжением с землей, при этом все открытые части электроустановки с присутствием тока связаны с грунтовым контуром через заземлитель, который не зависит от нейтрального провода генератора или трансформатора.

По системе IT выполняется защита агрегата, устраивается заземление и зануление. В чем разница такого подсоединения от предыдущей схемы? В этом случае передача излишнего напряжения с корпуса и открытых деталей происходит в землю, а нейтраль источника, изолированая от грунта, заземляется посредством приборов с большим сопротивлением. Эта схема устраивается в специальном электрическом оборудовании, в котором должна быть повышенная безопасность и стабильность, например, в лечебных учреждениях.

Виды систем зануления

Система зануления PNG является простой в конструкции, в ней нулевой и защитный проводники совмещаются на всей протяженности. Именно для совмещенного провода применяется указанная аббревиатура. К недостаткам относят повышенные требования к слаженному взаимодействию потенциалов и проводникового сечения. Система успешно используется для зануления асинхронных агрегатов.

Не разрешается выполнять защиту по такой схеме в групповых однофазных и распределительных сетях. Запрещается совмещение и замена функций нулевого и защитного кабелей в однофазной цепи постоянного тока. В них применяется дополнительный с маркировкой ПУЭ-7.

Есть более совершенная система зануления для электроустановок, питающихся от однофазной сети. В ней совмещенный общий проводник PEN присоединяется к в источнике тока. Разделение на N и РЕ проводники происходит в месте разветвления магистрали на однофазных потребителей, например, в подъездном щите многоквартирного жилища.

В заключение следует отметить, что защита потребителей от поражения током и порчи электрических бытовых приборов при скачках напряжения является главной задачей энергообеспечения. Чем отличается заземление от зануления, объясняется просто, понятие не требует специальных знаний. Но в любом случае меры по поддержанию безопасности бытовых электроприборов или промышленного оборудования должны осуществляться постоянно и на должном уровне.

Источниками электрических систем, устанавливаемых в домах и квартирах, выступают станции и генераторы, состоящие из трех обмоток и фазных проводников. Чтобы в процессе эксплуатации жилища не возникало проблем с использованием и обслуживанием электросети, нужно знать, что такое фаза, ноль и земля в электропроводке квартиры .

На рисунке ниже представлена схема расщепления трехфазной сети на однофазные.

Помимо 3-х фаз и 1 ноля кабель имеет еще и заземление , потому от подстанции к объектам подводится провод с пятью жилами. От общедомовых щитков на распределительные приборы отдельных квартир прокладывают однофазный ввод, имеющий фазу, ноль и заземление. За счет этого в сети мы имеем напряжение 220 В, а не изначальные 380 В. В процессе передачи электроэнергии участвует только два проводника – фаза и ноль, заземление имеет другую функцию, заключающуюся в обеспечении безопасности эксплуатации электросети в случае возникновения аварийных ситуаций – появления пробоев в изоляции или токов утечки.

В трехфазной цепи уровень напряжения между двумя любыми фазами составляет 380 В, между фазой и нолем – 220 В.

В общедомовом электрическом щите ноль и земля соединяются и подключаются к установленному контуру заземления. К распределительным щитам квартир эти проводники прокладываются отдельно. В этажных распределительных приборах ноль подключают к специальному контакту, а заземление соединяется с корпусом электрощитка.

В бытовых электросетях используется электрический переменный ток частотой 50 Гц. Он протекает между нулевым и фазным проводником, меняя свое направление 50 раз в секунду.

Ноль и фаза соединяются с точками потребления квартиры. Проводник , но через специальные контакты.

При работе с электрической сетью обязательно нужно помнить, что при соприкосновении фазы с телом человека, через организм пройдет электрический заряд, способный причинить существенный вред здоровью. Именно поэтому установка розеток и выключателей может производиться только при обесточивании линии электроснабжения в квартире.

Если к нулю подключено электрическое устройство с импульсным блоком питания, через нулевой проводник также может проходить электроток, хотя из-за низкого уровня напряжения он редко представляет опасность для человека.

Маркировка и определение фазы, ноля и земли

В электрических кабелях фазный, нулевой и заземлительный проводники имеют изоляцию разных цветов. Маркировка проводов требуется для обеспечения безопасности выполнения электромонтажных работ – прокладки электрических кабелей и установки точек потребления. Маркируются проводники согласно современным требованиям ПУЭ и ГОСТа.

Изоляция заземлительного проводника должна быть окрашена в желто-зеленый цвет. Некоторые производители выпускают кабели, в которых земля имеет чисто желтую или чисто зеленую окраску. Иногда изоляция заземления маркируется желто-зелеными полосами. На электрических схемах заземление обозначается латинскими буквами PE.

Нулевой проводник, именуемый также нейтралью, должен иметь изоляцию синего или светло-голубого цвета. На схемах ноль принято обозначать латинской буквой N.

Сложнее всего обстоят дела с фазным проводником. Различные производители для фазы используют изоляцию черного, белого, коричневого, серого, красного, оранжевого, бирюзового, розового или фиолетового цвета. Чаще всего встречаются черные, белые и коричневые проводники. Фазы обозначаются на схемах латинской буквой L. В сетях 380 В кабели имеют также числовое значение: L1, L2, L3.

Если по маркировке сложно определить тип проводника, всегда можно воспользоваться индикаторной отверткой . С ее помощью легко найти фазу и ноль в розетке или электрическом кабеле. При использовании индикаторов обязательно нужно помнить о технике безопасности.

Откуда к нам в дом попадает защитное зануление, оно же ноль или нейтраль? Давайте рассмотрим его путь от трансформаторной подстанции. Как видно из схемы (внизу), начинается оно с глухозаземленной нейтрали.

В нашем случае глухозаземленная нейтраль – это нейтраль силового трансформатора, соединённая с . Затем вместе с линией, состоящей из трех фаз, нейтраль попадает во вводной шкаф и распределяется по электрощитам на этажах.

От нее берется рабочий ноль, который вместе с фазой образует привычное для нас фазное напряжение. Ноль называется рабочим, потому что вы используете его для работы электроприборов (электроустановок).

А вот отдельный ноль (защитный ноль), взятый со щитка, электрически соединенный с глухозаземленной нейтралью, и образует защитное зануление .

Помните, в цепи защитных зануляющих проводников не должно быть разделяющих приспособлений и предохранителей.

Внимание!

Никогда не используйте рабочий ноль как защитный (защитное зануление) , этим вы подвергните опасности, как себя, так и окружающих вас людей.

Поскольку при обрыве цепи рабочего нуля, фазный ток через включенные нагрузки попадет на корпус электроприбора , и вместо защиты вы получите ничем не защищенный источник опасного напряжения .

Назначение защитного зануления – устранение опасности поражения электрическим током при прикосновении к корпусу электроустановки или другим нетоковедущим частям, оказавшимся под напряжением, при замыкании фазы на корпус или землю.

Принцип действия зануления заключается в превращении замыкания фазного проводника на корпус электроустановки в однофазное короткое замыкание. Что вызывает большой ток, который обеспечивает быстрое срабатывание защиты поврежденной электроустановки и отключает ее от питающей сети.

Электросхема по теме защитное зануление

1 – Трансформаторная подстанция

  • S – Отсекатель
  • FV1 – FV6 разрядники
  • F1 – F3 предохранители
  • Т – силовой трансформатор
  • S1 – рубильник
  • SF1 – SF3 – автоматические выключатели
  • A , B , C – Линия состоящая из фаз
  • N – Глухозаземленная нейтраль

2 – Многоэтажный дом

2а – Квартира

2b – Распределительный электрический щит

  • SF – автоматический выключатель
  • BW – Счетчик
  • L c – фаза
  • N – нейтраль

2C – Вводной электрошкаф

  • A , B , C – Фазные линии
  • N – Глухозаземленная нейтраль
  • F 4 – F 6 Предохранители
  • S 2 – Рубильник

Зануляющие и питающие проводники должны быть одного сечения, кабеля с тремя проводами легко решают эту проблему. Нужное вам сечение провода можете выбрать по таблице

Статья написана в ознакомительных целях для более простого представления, что такое защитное зануление и откуда оно берется.

Удачного монтажа!
————————————————————————————-
Источники:
Консультант Святенко С. П.
Сайт «Школа для электрика» http://electricalschool.info
Г. А. Дулицкий, А.П. Комаревцев справочник «Электробезопасность при эксплуатации электроустановок до 1000В»

Зануление является преднамеренным электрическим соединением открытых проводящих элементов электрических установок, которые не находятся в нормальном состоянии под напряжением, с глухозаземлённой нейтральной точкой трансформатора или генератора, в электросетях трехфазного тока; с заземлённой точкой источника в электросетях постоянного тока; с глухозаземлённым выводом источника однофазного электрического тока. Целью выполнения зануления является обеспечение электрообезопасности.

Зануление отличается от заземления тем, что оно рассчитано на эффект короткого замыкания. Если распределение нагрузок на производстве является более или менее равномерным, и нулевой проводник в основном выполняет защитные функции, то в таком случае «ноль» цепляется к корпусу электрического мотора. Короткое замыкание происходит при попадании напряжения одной из фаз на корпус электрического двигателя.

При этом срабатывает на отключение дифавтомат или обычный автоматический выключатель. Необходимо также отметить, что посредством использования металлической заземляющей шины между собой соединяются все производственные электроустановки, которые выведены на общий контур заземления всего здания.

Как выполняется зануление электрооборудования

Далее расскажем о том, откуда защитное зануление попадает в наш дом, и рассмотрим его путь от трансформаторной подстанции и безопасно ли выполнять зануление в квартире. Начинается такое зануление с глухозаземлённой нейтрали - соединенной с заземляющим устройством нейтрали силового трансформатора.

Нейтраль вместе с трехфазной линией сначала попадает во вводной шкаф. Оттуда же она распределяется по находящимся на этажах электрическим щиткам.

От нее берется рабочий ноль, образующий вместе с фазой привычное для нас фазное напряжение. Название «рабочий ноль» связано с тем, что он используется для работы электроустановок или электроприборов.

Взятым с электрощитка защитным отдельным нулем, имеющим электрическое соединение с глухозаземлённой нейтралью, и образуется защитное зануление . Необходимо обязательно знать, что в цепи защитных зануляющих проводников никаких коммутационных аппаратов (автоматов, рубильников и т.п.), а также предохранителей быть не должно.

Область применения защитного зануления

Защитное заземление используется в электрических установках напряжением до 1 кВ:

  1. - в сетях постоянного электрического тока с заземленной средней точкой источника;
  2. - в однофазных электросетях переменного тока с заземленным выводом;
  3. - в трехфазных электросетях переменного тока с заземленным нулем (система TN – S; как правило, это сети 660/380, 380/220, 220/127 В);

Образование цепи тока однофазного короткого замыкания (т.е. замыкания между нулевым и фазным защитными проводниками) происходит в случае замыкания фазного провода на зануленный корпус электропотребителя. Поврежденная электроустановка отключается от питающей сети вследствие срабатывания защиты, вызывающейся током однофазного короткого замыкания.

Для быстрого отключения находящейся электроустановки могут использоваться автоматические выключатели и плавкие предохранители, устанавливаемые для защиты от токов короткого замыкания. Также для этой цели применяются магнитные пускатели с тепловой защитой встроенного типа, контакторы с тепловыми реле, с помощью которых обеспечивается защита от перегрузки и др.

Принцип действия защитного зануления

Короткое замыкание происходит при попадании фазового провода (напряжения) на металлический корпус прибора, соединенный с нулевым проводником. При этом фиксируется увеличение силы тока в цепи до огромных величин, вследствие чего срабатывают защитные аппараты, которые отключают питающую неисправный прибор линию.

Время отключения в автоматическом режиме поврежденной электролинии для фазного напряжения сети 380/220 В, в соответствии с ПУЭ, не должно превышать 0,4 секунд.

Для осуществления зануления используются специально предназначенные проводники, к примеру, третья жила кабеля или провода в случае с однофазной проводкой.

Петля «фаза-ноль» должна иметь небольшое сопротивление, ведь только в таком случае отключение защитного аппарата происходит в предусмотренное правилами время. Поэтому добиться эффективного зануления можно исключительным образом при высоком качестве всех соединений и монтажа сети.

Зануление позволяет обеспечивать не только быстрое отключение от электричества неисправной линии, но и, благодаря заземлению нейтрали, низкое напряжение прикосновения на корпусе электрического прибора. Благодаря этому вероятность поражения человеческого организма электрическим током исключается. Заземленная нейтраль дает повод называть зануление определенной разновидностью заземления.

Следовательно, в качестве основания принципа действия защитного зануления выступает превращение замыкания на корпус в однофазное к.з. для вызова обеспечивающего срабатывание защиты большого тока, конечной целью чего является отключение от сети поврежденной электрической установки.

Чем опасно зануление в квартире

Зануление значительно отличается от заземления. Попробуем рассмотреть это отличие более подробно. В соответствии с ПУЭ, использование на бытовом уровне такой преднамеренной защиты, как зануление, запрещено из-за ее небезопасности.

Но, несмотря на то, что практиковаться такая система должна только в промышленном производстве, многие ставят ее и в своих квартирах. Прибегают к этой далекой от совершенства защите, в частности, в связи с отсутствием иного варианта или вследствие недостатка знаний в данной сфере.

Действительно, сделать можно, но последствия от этого будут далеко не наилучшими. Далее на примерах рассмотрим некоторые ситуации, которые могут возникать в случае выполнения в квартире зануления.

1) Зануление в розетках

Иногда предлагается выполнить «заземление» электрических приборов посредством перемычки клеммы рабочего нуля в розетке на защитный контакт. Такой метод «заземления» не соответствует требованиям пункта 1.7.132 ПУЭ, ведь он подразумевает использование нулевого проводника двухпроводной сети в качестве защитного и рабочего нуля одновременно.

Помимо того, на вводе в квартиру обычно имеется аппарат, предназначенный для коммутации как фазы, так и нуля, к примеру, пакетник или двухполюсный аппарат. Но коммутировать нулевой проводник, который используется в качестве защитного, запрещено. То есть, нельзя использовать в качестве защитного проводник, цепь которого имеет коммутационный аппарат.

Опасность «заземления» перемычкой в розетке заключается в том, что корпуса электроприборов при нарушении целостности нуля в любом месте окажутся под фазным напряжением. При обрыве же нулевого провода работа электроприемника прерывается, и тогда такой провод имеет вид обесточенного, то есть безопасного, что, конечно же, усугубляет ситуацию.

Можно только представить, сколько беды наделает такая розетка, если в нее включить стиральную машину. В данном случае можно увидеть перемычку, которая соединяет «нулевой» контакт с защитным. И, если бы отгорел «ноль», то такая стиральная машина превратилась бы в «убийцу».

Если же во время принятия человеком душа вывалится нулевая «сопля» в розетке, к которой подключен бойлер, такого человека просто «прошьет» током. Поэтому такое зануление в квартире крайне опасно и его запрещено выполнять.

2) Перепутаны местами фаза и ноль

Рассмотрев следующий пример, можно наглядно увидеть наиболее вероятную опасность в двухпроводном стояке. Нередко при осуществлении каких-либо ремонтных работ в домовом электрохозяйстве ноль "N" ошибочно меняют местами с фазой "L".

Отличительной окраски жилы проводов в электрощитке в домах с двухпроводкой не имеют, и при выполнении каких-либо работ в щитке любой электрик может переключить ноль и фазу местами – корпуса электроприборов в таком случае тоже окажутся под фазным напряжением.

Необходимо обязательно помнить о высокой опасности выполнения защитного зануления в двухпроводной системе . Поэтому, в соответствии с правилами, это делать запрещено!

3) Отгорания нуля

Что такое «отгорание нуля», или обрыв нуля, знает каждый электрик, но далеко не каждый потребитель электроэнергии. Попробуем разобраться в значении данной фразы, и выяснить, какова опасность отгорания нуля?

Очень часто обрыв «нуля» фиксируется в домах со старыми проводками, основанием для проектирования которых являлся расчет примерно 2 кВт на квартиру. Конечно, нынешняя оснащенность квартир всевозможными электрическими приборами на порядок увеличивает данные цифры.

В случае обрыва «нуля» перекос фаз может происходить на трансформаторной подстанции, от которой запитан многоэтажный дом, в общем электрощите или в щитке на лестничной площадке этого дома, в расположенной после этого обрыва электролинии. Результатом может стать поступление в одну часть квартир пониженного напряжения, а в другую – повышенного.

Пониженное напряжение опасно для холодильников, кондиционеров, сплит - систем, вытяжек, вентиляторов и другой техники с электродвигателями. Что касается повышенного напряжения, то при нем может выйти из строя любой прибор бытовой техники.

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Простое объяснение

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о вы можете узнать в соответствующем разделе сайта.

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить , чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.